首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we assessed the suitability of semiconducting P3OT thin films (30 nm) to sustain attachment, spreading, and proliferation of MC3T3‐E1 osteoblasts. Cell area correlated with surface wettability: area was larger on the more hydrophilic surface (TCPS) and lower on the more hydrophobic surface (P3OT). Cells were rounder, characterized by higher circularity values, on TCPS and Si compared to P3OT. P3OT proliferation rate at 24 h fell twofold after 48 h, then recovered at 72 h to a value significantly higher than that on TCPS. Presoaking experiments showed no evidence of cytotoxic effects or leachants from P3OT. Overall, we conclude that P3OT is a viable substrate for osteoblast attachment and proliferation.

  相似文献   


2.
The transport properties of conducting polymers are known to be greatly influenced by the chemical unsaturation surrounding the polymer backbone, besides favorable conformation of the side chains present. Polymeric composites with multi‐walled carbon nanotubes (MWNT) can provide a good conductive path at relatively low carbon contents, as these have high aspect ratio, specific surfaces and are cost effective. Hence their use in various applications such as organic LED, solar cells and supercapacitors are very much anticipated. In this respect poly(3‐octylthiophene)/MWNT composites have been prepared by an “insitu” polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites were characterized by Fourier Transfer Infrared spectroscopy (FT‐IR), Raman, work function and X‐ray diffraction (XRD) measurements. The results indicate only a weak ππ interaction between the moieties, in the absence of a strong covalent bonding. The ultraviolet–visible (UV–Vis) measurements also support this view. The photoluminescence (PL) quenching indicates the effectiveness of the interface in the formation of the donor–acceptor type composite. The conductivity of the composites is followed by a four probe technique to understand the conduction mechanism. The Hall voltage measurement is followed to monitor carrier concentrations and mobilities. The impressive conductivity and mobility values encourage the utility of the composites as photovoltaic material. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

4.
Free radical polymerization under ambient conditions gives very low‐molecular weight homopolymer of isopropenyl acetate (IPAc). On the other hand, poly (isopropenyl acetate) (PIPAc) with a weight average molecular weight over 104 was found to be synthesized by high‐pressure (1 GPa) radical polymerization. Poly(isopropenyl alcohol) (PIPOH) was then derived from PIPAc by saponification. The structure and properties of PIPAc and PIPOH were investigated using X‐ray diffraction, thermal analyses, X‐ray photoelectron spectroscopy, and dynamic contact angles. Though PIPOH is insoluble in water, the surface free energy (55 mJ/m2) was comparable with that of poly(vinyl alcohol). To utilize the peculiar combination of “aqueous insolubileity and high hydrophilicity” of PIPOH, biocompatibilities of PIPOH surface was investigated. The PIPOH surface was found to show high repellencies to albumin adsorption, whole thrombogenesis, and cell adhesion. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 754–761, 2009  相似文献   

5.
The widespread use of poly(3‐hexylthiophene) (P3HT) in the active layers of organic solar cells indicates that it possesses chemical stability and solubility suitable for such an application. However, it would be desirable to have a material that can maintain these properties but with a smaller bandgap, which would lead to more efficient energy harvesting of the solar spectrum. Fifteen P3HT derivatives were studied using the Density Functional Theory. The conclusion is that it is possible to obtain compounds with significantly smaller bandgaps and with solubility and stability similar to that of P3HT, mostly through the binding of oxygen atoms or conjugated organic groups to the thiophenic ring. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys., 2013  相似文献   

6.
A set of poly(2‐oxazoline)‐derived (co‐)polymers was prepared by microwave‐assisted polymerizations and acid‐mediated hydrolysis and tested for antimicrobial activity in 50 × 50 × 2 mm PP compound plates containing 5 wt% of the polymers. Antimicrobial activity against gram‐negative E. coli and P. aeruginosa as well as C. albicans depended only on the degree of hydrolysis, while antimicrobial activity against gram‐positive S. aureus was only observed for hydrolyzed poly(2‐nonyl‐2‐oxazoline)s. The surface energies of the compound plates compared to pure PP were hardly altered, and the compounds can be considered as alternatives for PP. The presence of the biocide additives at the surface of the PP compound plates could be shown by combined ATR‐IR, zeta potential, and SEM‐EDX measurements. Antimicrobial activity was maintained during double incubation as well as for lowered amounts of the biocide additive of 1% in PP compound plates.

  相似文献   


7.
A straightforward synthesis of amphiphilic β‐cyclodextrin‐poly(4‐acryloylmorpholine) (β‐CD‐PACM) polymers of controlled molecular weight, consisting of the radical polymerization of 4‐acryloylmorpholine in the presence of 6‐deoxy‐6‐mercapto‐β‐cyclodextrin (β‐CD‐SH) as chain‐transfer agent, has been established. These derivatives carry a single β‐cyclodextrin (β‐CD) moiety at one terminus and their average molecular weight is in the order of 104. Thus, their β‐CD content is ~ 10% by weight. No evidence of un‐functionalized PACM was found in the final products. The chain‐transfer constant (CT) of β‐CD‐SH was found to be 1.30 by independently determining the reaction constants of both chain‐transfer and propagation reactions. This ensures that the molecular weight, hence the β‐CD content of the polymers, does not significantly vary with conversion. These β‐CD‐PACM polymers are highly soluble in water as well as in several organic solvents such as chloroform and lower alcohols. They proved capable of solubilizing in water poorly soluble drugs such as 9‐[(2‐hydroxyethoxy)methyl]guanine (Acyclovir) and of gradually releasing them in aqueous systems. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1607–1617, 2008  相似文献   

8.
The synthesis of 3,4‐ethylenedioxythiophene (EDOT) derivatives bearing functional groups is described. Their electrochemical characteristics were investigated with cyclic voltammetry and ultraviolet–visible spectroscopy. Various copolymers of EDOT and modified EDOT containing hydroxyl groups were electrochemically prepared. The ability to bind proteins to the surface of these copolymers was investigated through the covalent coupling of glucose oxidase. The obtained materials were used as working electrodes and were shown to be able to amperometrically detect glucose under aerobic and anaerobic conditions. Possible applications of these materials as biosensors are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 738–747, 2002; DOI 10.1002/pola.10159  相似文献   

9.
The unique features of shape‐memory polymers enables their use in minimally invasive surgical procedures with a compact starting material switching over to a voluminous structure in vivo. In this work, a series of transparent, thermoset (meth)acrylate shape‐memory polymer networks with tailored thermomechanics have been synthesized and evaluated. Fundamental trends were established for the effect of the crosslinker content and crosslinker molecular weight on glass transition temperature, rubbery modulus and shape‐recovery behavior, and the results are intended to help with future shape‐memory device design. The prepared (meth)acrylate networks with high transparency and favorable biocompatibility are presented as a promising shape‐memory ophthalmic biomaterial.

  相似文献   


10.
11.
Summary: The polymerization of 2‐bromo‐3‐hexyl‐5‐iodothiophene ( 1 ) with isopropylmagnesium chloride and Ni(dppp)Cl2 was quenched with 5 M hydrochloric acid instead of water to yield head‐to‐tail poly(3‐hexylthiophene) (HT‐P3HT) with a very low polydispersity. The of the polymer was controlled by the feed ratio of 1 to Ni(dppp)Cl2. Quenching with 5 M hydrochloric acid seemed to promote protonolysis of HT‐P3HT‐Ni complexes before the coupling reaction between HT‐P3HT.

GPC profiles of HT‐P3HT obtained after quenching with water and 5 M hydrochloric acid, respectively.  相似文献   


12.
Summary: Poly(2‐methoxyaniline‐5‐sulfonic acid) (PMAS) is a water‐soluble derivative of polyaniline that carries negatively charged sulfonate groups. This self‐doped conducting polymer also behaves like a polyelectrolyte that can subsequently function as a dopant in polyaniline (PAn). The chemical synthesis of PAn/PMAS is presented describing the preparation of a highly stable composite dispersion. TEM images reveal a mixture of well‐defined nanofibres and nanoparticles with diameters between 20 and 100 nm. The UV‐vis spectra of the PAn/PMAS composite in water and in alkaline media indicate that both PAn and PMAS are present in the composite. Electrochemical studies show that both of the conducting polymer components are capable of undergoing oxidation and reduction. The novel PAn/PMAS nanocomposite has enhanced electrical conductivity and stability compared to PAn/HCl nanofibres prepared under equivalent conditions, making it a promising material for applications in areas such as batteries, electronic textiles, electrochromics, and chemical sensors.

Transmission electron micrograph of a PAn/PMAS nanocomposite.  相似文献   


13.
The present paper reports the preparation of poly (3,4‐ethylenedioxythiophene) (PEDOT) ferrimagnetic conducting polymer composite by incorporation of ferrite particles in the polymer matrix by emulsion polymerization. Synthesis of PEDOT–γ‐Fe2O3 composite was carried out by chemical oxidative polymerization of EDOT with ferrite particles in the presence of dodecylbenzenesulfonic acid (DBSA) that works as dopant as well as surfactant in aqueous medium. The resulting conducting composite possesses saturation magnetization (Ms) value of 20.56 emu/g with a conductivity of 0.4 Scm?1, which was determined by VSM and four probe technique, respectively. B‐H curve reveals that ferrimagnetic particles of γ‐Fe2O3 show super‐paramagnetic behavior at room temperature which was also observed in PEDOT–γ‐Fe2O3 composite. The resulting conducting ferrimagnetic composite shows microwave absorption loss of 18.7–22.8 dB in the frequency range of 12.4–18 GHz. Thermogravimetric analysis of the composite revealed that the composite is thermally stable up to 230°C. The characterization of the PEDOT–γ‐Fe2O3 composite was carried out using XRD and FTIR spectroscopy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
《Electroanalysis》2006,18(1):19-25
The potentiometric response behavior of Ca2+‐selective poly(vinyl chloride) (PVC) and polyurethane (PU) membranes with different inner contacts has been compared. Evidence for the formation of a water film between membrane and internal contact and, hence, a less than optimal lower detection limit have been found for membranes directly in contact with bare Au or with polypyrrole generated by electropolymerization in the presence of KCl. A significantly better behavior is shown by membranes with polypyrrole prepared in the presence of potassium hexacyanoferrate. Best performances have been obtained with solvent‐cast poly(3‐octylthiophene) as the internal contacting layer. As compared with the PVC membranes, those with PU had a significantly worse performance throughout.  相似文献   

15.
16.
Tailor‐made polymers containing specific chemical functionalities have ushered in a number of emerging fields in polymer science. In most of these next‐generation applications the focus of the community has centered upon closed‐shell macromolecules. Conversely, macromolecules containing stable radical sites have been less studied despite the promise of this evolving class of polymers. In particular, radical‐containing macromolecules have shown great potential in magnetic, energy storage, and biomedical applications. Here, the progress regarding the syntheses of open‐shell containing polymers are reviewed in two distinct subclasses. In the first, the syntheses of radical polymers (i.e., materials composed of non‐conjugated macromolecular backbones and with open‐shell units present on the polymer pendant sites) are described. In the second, polyradical (i.e., macromolecules containing stabilized radical sites either within the macromolecular backbone or those containing radical sites that are stabilized through a large degree of conjugation) synthetic schemes are presented. Thus, the state‐of‐the‐art in open‐shell macromolecular syntheses will be reported and future means by which to advance the current archetype will be discussed. By detailing the synthetic pathways possible for, and the inherent synthetic limitations of, the creation of these functional polymers, the community will be able to extend the bounds of the radical‐containing macromolecular paradigm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1875–1894  相似文献   

17.
The dielectric properties of poly(styrene) nanoparticles decorated at their surfaces with poly(styrene sulfonate) [PSS] brushes and subsequently loaded with polypyrrole (PPy) were studied. These film‐forming materials which may serve as hole‐injection layers in organic light‐emitting diodes, exhibit a core–shell‐type morphology with a core of electrically insulating poly(styrene) and a shell consisting of a corona of PSS chains which form the matrix in which the electrically conducting complex of PPy and PSS is embedded. This conducting complex exists in form of domains of nanoscale dimensions. Thin compressed pellets of these nanoparticles were studied using mainly impedance spectroscopy. Measurements were carried out in the temperature range between 123 and 453 K and frequency range from 10?1 to 106 Hz. While earlier studies were centered around the effect of polypyrrole volume fraction on the conductivity films and pellets composed of these nanoparticles, the present study reveals in which way the conductivity can be modified by exchange of the mobile inorganic counter ions of PSS. Besides the free‐acid form (H+), the Li+‐, Na+‐ and Cs+‐salts of PSS were investigated. The PPy volume fraction was the same for all PPy/PSS core–shell nanoparticles. The distance for phonon‐assisted hopping between next‐neighbor polypyrrolium chains is influenced by the presence of these inorganic cations. For all samples containing PPy, a transition from insulating to conducting behavior in the range of 300‐350 K was found. Using the fluctuation‐induced tunneling model, the average tunneling distance, as well as the potential energy barrier separating neighboring conducting grains was estimated. Finally, a detailed analysis of the dielectric spectra suggests the localization length of the charge carriers to be about 0.33 nm.  相似文献   

18.
This study is aimed at investigating the microbiocidal potential of amino‐functionalized poly(norbornenes) in the solid state. A series of norbornene‐type monomers that carry secondary or tertiary amine functions as well as hexyl and dodecyl groups were prepared. Ring‐opening metathesis polymerization was used to prepare homopolymers of the amine bearing monomers and random copolymers of amine‐ and alkyl‐substituted monomers of high average molar mass. The resulting polymers were characterized by nuclear magnetic resonance, thermogravimetry, differential scanning calorimetry, infrared spectroscopy, and contact angle measurements, and their contact biocidal potential was evaluated according to the Japanese Industry standard Z2801. Tested microorganisms comprised Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger. Microbiocidal activity of selected polymer films against E. coli, S. aureus, and A. niger was found, whereas against C. albicans and P. aeruginosa microbiostatic behavior was observed. Moreover, the most potent copolymer revealed no cytotoxicity rendering a biocidal polymer with potential applications in mammalian‐, and in particular, human‐related fields. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A simplified artificial muscle has been constructed by assembling different polypyrrole structures in the same synthesis process. This produces not only “all‐polymeric” but rather a new generation of “all‐conducting‐polymer” artificial muscles, capable of moving in electrolytic media by an electrical current application with no evidence of delamination after several cycles. Suitable devices can be constructed for biomedical applications, based on this conducting polymer film. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Bioaffinity separation has a unique and powerful role as a support tool in the removal of toxic substances from human plasma. Magnetic beads have advantages as supports in comparison to conventional nonmagnetic beads because of low pressure drop, high mass transfer rates, and good fluid‐solid contact. In addition, they eliminate internal diffusion limitations. Human serum albumin (HSA) immobilised onto magnetic poly(2‐hydroxyethyl methacrylate) (mPHEMA) beads were investigated as an adsorbent for the selective bilirubin removal from human plasma. The mPHEMA beads were prepared by a modified suspension polymerisation. HSA was covalently coupled to the mPHEMA beads. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the mPHEMA beads containing different amounts of immobilised HSA, (between 11–100 mg/g). The nonspecific bilirubin adsorption on the unmodified mPHEMA beads was 0.47 mg/g. Higher bilirubin adsorption capacities, up to 64.7 mg/g, were obtained with the HSA‐immobilised magnetic beads. Bilirubin adsorption increased with increasing temperature.

Effect of HSA loading on bilirubin adsorption.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号