首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposites of sodium smectite with polyether‐ and polystyrene‐containing pendant cyclic carbonates offer a novel approach to improving hydraulic barrier properties of Na‐smectite liners to saline leachates. The cyclic carbonate polyethers were prepared by cationic ring opening polymerization of a cyclic carbonate‐containing epoxide, whilst polystyrene polymers having pendant cyclic carbonate groups were obtained from radical photopolymerization of styrene. Na‐smectite nanocomposites of these polymers were formed via clay in situ polymerization and solution intercalation methods. X‐ray diffraction (XRD) and FT‐IR analysis confirmed that the polyether can be intercalated within the layers of smectite via in situ as well as solution intercalation of the pre‐formed polymer. The cyclic carbonate polyether nanocomposite was more resistant to leaching in 3M aqueous sodium chloride than its respective cyclic carbonate. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2421–2429  相似文献   

2.
In this article we described our new approach to the polymer monolith with its morphology tailored for HPLC application to small solutes such as drug candidates. We prepared polymer monoliths based on glycerin 1,3‐dimethacrylate, GDMA with a bicontinuous structure by in situ photoinitiated free radical polymerization (UV irradiation at 365 nm). Our photopolymerization was carried out with a monodispese ultra high molecular weight polystyrene solution in chlorobenzene uniquely formulated as a porogen. The poly‐GDMA monoliths in bulk, rod and capillary thus prepared showed a bicontinuous network‐like structure featured by their fine skeletal thickness nearly in sub μm size. This monolithic structure was considered as a time‐evolved morphology frozen by UV‐irradiation via viscoelastic phase separation induced by the said porogenic polystyrene solution. According to our μHPLC measurement with acetophenone as a model solute, the UV prepared poly‐GDMA capillary demonstrated a much shaper elution profile affording higher column efficiency and permeability as compared with the thermally prepared capillary of the same bore size. Our investigation showed experimentally that poly‐GDMA monoliths with a well‐defined bicontinuous structure could be prepared reproducibly by photoinitiated radical polymerization via viscoelastic phase separation using the said unique porogen. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4651–4673, 2008  相似文献   

3.
Fluorine‐containing polyethers with pendant hydroxyl groups were synthesized by the polyaddition of fluorine‐containing bis(epoxide)s with certain fluorine‐containing diols with quaternary onium salts as catalysts. When the polyaddition was performed with 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol diglycidiyl ether and 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol, the corresponding polyether with pendant hydroxyl groups was successfully obtained in good yield. The polyaddition of certain fluorine‐containing bis(epoxide)s with diols also proceeded in bulk to provide the corresponding fluorine‐containing polyethers with high molecular weights. These polyethers were highly transparent at 157 nm for 0.1 μm thickness, with their transmittance of 14–75% at 157 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2543–2550, 2004  相似文献   

4.
New homopolymers and copolymers based on aromatic polyethers bearing side diphosphonate and diphosphonic groups have been synthesized. These synthetic efforts resulted in homo and copolymers of high thermal stability but moderate molecular weights. To evaluate the influence of the immobilized phosphonate ester and phosphonic acid moieties on polymer electrolyte membranes for fuel cells applications, blends of the newly synthesized homo and copolymers with a pyridine‐based aromatic polyether were prepared. These blends were miscible with high glass transition temperatures and high thermal stabilities. Furthermore, the introduction of these groups to a polymeric backbone significantly increases the doping ability in phosphoric acid compared to the net matrix as well as the ionic conductivity for high doping levels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2817–2827, 2010  相似文献   

5.
Semi-interpenetrating polymer networks (semi-IPNs) of poly(ethylene glycol) (PEG) in poly(trimethylolpropane triacrylate) (TMPTA) were synthesized from PEG melts in neat TMPTA monomer, using PEG of molecular weights from 4000 to 100,000 g/mol. Differential scanning calorimetry and transmission electron microscopy were used to examine phase separation occurring during network formation. The degree of phase separation was observed to depend upon the rate of PEG aggregation relative to the rate of network formation during TMPTA polymerization. Higher molecular weight PEG and acrylate-functionalized PEG formed more phase-mixed networks compared to lower molecular weight PEG; acetatefunctionalized PEG showed no difference from unmodified PEG in the extent of phase mixing. For networks that demonstrated phase separation, the PEG was observed to be in two states: some being phase mixed and solvent inextractable, and some being phase separated and solvent extractable. Phase-mixed networks could be obtained from this thermodynamically incompatible polymer pair utilizing rapid photopolymerization systems to overcome PEG phase aggregation and kinetically entrap the PEG in a nonequilibrium phase-mixed state. These mixed-phase semi-IPNs of PEG and TMPTA may be useful in biological applications where the presence of PEG is desired throughout the bulk matrix rather than as a surface graft to reduce biological interactions. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The network formation and viscoelastic behavior of a liquid crystalline monomer, whose structure includes both acrylate and acetylene reactive groups, have been studied. By combining both photo and thermal polymerization, the networks can be formed in two separate steps, with the initial photopolymerization dominated by acrylate crosslinking and subsequent thermal polymerization dominated by acetylene crosslinking. In addition, the monomer exhibits a liquid crystalline phase. Photopolymerization while in the liquid crystal phase locks in the molecular ordering. Dynamic mechanical analysis shows that networks formed from the liquid crystalline phase have lower crosslink densities and narrower distributions of molecular weights between crosslinks when compared to networks formed from the isotropic phase (and at higher polymerization temperatures). After thermal postcure at 250°C, the networks formed from the isotropic monomer have a 23% higher dynamic mechanical storage modulus (in the glassy state) than the networks formed from the liquid crystalline monomer. The thermally postcured networks have unusually high glass‐transition temperatures, which exceed 300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1183–1190, 1999  相似文献   

7.
Ultrahigh‐molecular‐weight linear polyethers were prepared through a reaction between the phenylquinoxaline monomers 2,3‐bis(4‐hydroxyphenyl)‐6‐fluoroquinoxaline and 2,3‐bis(4‐hydroxyphenyl)‐6‐(α,α,α‐trifluoromethyl)quinoxaline and 1,12‐dibromododecane. A new hyperbranched polyether containing a phenylquinoxaline moiety was also prepared from a new self‐polymerizable AB2 monomer, 2,3‐bis(6‐bromohexyloxyphenyl)‐6‐(4‐hydroxyphenyloxy)quinoxaline. All the polyethers were amorphous and soluble in polar aprotic solvents. Their solution‐cast thin films were light yellow, ductile, and optically transparent. The polymers were thermally stable up to 350 °C and had glass‐transition temperatures in the range of 25–83 °C, which depended on the architecture and monomer structure. The monomers and polymers displayed fluorescence maxima in the blue‐light region in the range of 431–449 nm with relatively narrow peak widths; this indicated that they had pure and intense fluorescence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3587–3603, 2004  相似文献   

8.
For the synthesis of polyethers with a variety of keto side chains in a one‐step reaction, the three‐component polycondensation of dialdehydes, diol disilyl ethers, and silyl enol ethers of ketones was investigated. The method of monomer addition strongly affected the molecular weight of polymers and was optimized to yield high molecular weight polymers by model reactions. A variety of dialdehydes, diol disilyl ethers, and silyl enol ethers were polymerized in the presence of a catalytic amount of triphenylmethyl (trityl) perchlorate in CH2Cl2 at −78 °C according to the method of monomer addition. This polymer synthesis was unusual in that it concurrently constructed both the polyether backbone and the keto side chains from three starting compounds. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 179–188, 2000  相似文献   

9.
Herein we develop a facile synthetic strategy for the functionalization of well‐defined polyether copolymers with control over the number and location of catechol groups. Previously, the functionalization of polyethylene oxide (PEO)‐based polymers with catechols has been limited to functionalization of the chain ends only, hampering the synthesis of adhesive and antifouling materials based on this platform. To address this challenge, we describe an efficient and high‐yielding route to catechol‐functionalized polyethers, which could allow the effects of polymer architecture, molecular weight, and catechol incorporation on the adhesive properties of surface‐anchored PEO to be studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2685–2692  相似文献   

10.
Simultaneous free radical and cationic photopolymerizations of mixtures of multifunctional acrylate and oxetane monomers were carried out to provide hybrid interpenetrating network polymers. The use of “kick‐started” oxetanes in which oxetane monomers are accelerated by the use of small amounts of certain highly substituted epoxides provides dual independent radical and cationic systems with similar rates of photopolymerization leading to homogeneous interpenetrating networks. The combined photopolymerizations are very rapid and afford crosslinked network films that are colorless, hard, and transparent. The networks display no indications of phase separation. The use of this technology in various applications such as coatings, 3D imaging, and for composites is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 594–601  相似文献   

11.
The analysis of a thermoplastic polymer blend requires a precise separation of the blend components, which is usually performed by selective solvent extraction. However, when the components are high‐molecular‐weight polymers, a complete separation is very difficult. The use of fluids in near critical and supercritical conditions becomes a promising alternative to reach a much more precise separation. In this work, a method to separate reactive and physical blends from high‐molecular‐weight commercial polymers is proposed. Polyethylene (PE)/polystyrene (PS) blends were separated into their components with n‐propane, n‐pentane, and n‐heptane at near critical and supercritical conditions. The selectivity of each solvent was experimentally studied over a wide range of temperatures for assessing the processing windows for the separation of pure components. The entire PE phase was solubilized by n‐pentane and n‐heptane at similar temperatures, whereas propane at supercritical conditions could not dissolve the fraction of high‐molecular‐weight PE. The influence of the blend morphology and composition on the efficiency of the polymer separation was studied. In reactive blends, the in situ copolymer formed was solubilized with the PE phase by chemical affinity. The method proposed for blend separation is easy, rapid, and selective and seems to be a promising tool for blend separation, particularly for reactive blends, for which the isolation of the copolymer is essential for characterization © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2361–2369, 2005  相似文献   

12.
Photocurable, ternary‐component mixtures of a 1:1 molar multifunctional thiol–ene (trithiol and triallyl ether) blend and a 16‐functional acrylate based monomer have been photopolymerized, and the final film properties of the ternary crosslinked networks have been measured. The photopolymerization kinetics, morphology, and mechanical and physical properties of the films have been investigated with real‐time infrared, atomic force microscopy, and dynamic mechanical analysis. The photopolymerization process is a combination of acrylate homopolymerization and copolymerizations of thiol with allyl ether and acrylate functionalities. The tan δ peaks of the photopolymerized ternary systems are relatively narrow and tunable over a large temperature range. The morphology is characterized by a distinct phase‐separated nanostructure. The photocured thiol–ene/acrylate ternary systems can be made to exhibit good mechanical properties with enhanced energy absorption at room temperature by the appropriate selection of each component concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 822–829, 2007.  相似文献   

13.
The influence of molecular weight on thermal transitions and on the thermodynamic parameters was studied for two polymers based on 4,4′-dihydroxy-α-methylstilbene with either 1,9-dibromononane (HMS-C9 polyethers) or 1,11-dibromoundecane (HMS-C11 polyethers). HMS-C9 polyethers present an enantiotropic nematic mesophase over the entire range of molecular weights and a monotropic smectic mesophase for polymers of number average molecular weights higher than 17,000. The low molecular weight HMS-C11 polyethers are only crystalline. On increasing their molecular weight, the polymers become monotropic nematics, and at higher molecular weights, enantiotropic nematics. Up to a composition containing as little as 20 mol % nonane structural units, the random copolyethers based on 1,9-dibromononane, 1,11-dibromoundecane, and 4,4′-dihydroxy-α-methylstilbene (HMS-C9/11 copolyethers) exhibit on cooling a phase diagram resembling that of HMS-C9 polyether. HMS-C9/11 containing about a 1/1 mole ratio between the two spacers presents both smectic and nematic enantiotropic mesophases. These results suggest that the phase diagram of random liquid crystalline copolymers is controlled by the shorter spacer. The thermodynamic parameters of isotropization for both polyethers and copolyethers are compared and suggest that copolymerization does not significantly decrease the degree of order of the mesogenic units in the mesomorphic phase.  相似文献   

14.
Organic–inorganic hybrid materials were prepared by a convenient two‐step curing procedure based on sol–gel condensation and subsequent photopolymerization. Novel bismethacrylate‐based hybrid monomers with pendant, condensable alkoxysilane groups were prepared by Michael addition and possessed number‐average molecular weights between 580 and 1600 g/mol. The formation of inorganic networks by sol–gel condensation of the alkoxysilane groups in the presence of aqueous methacrylic acid was monitored with rheological measurements. The condensation conversion was monitored with solid‐state 29Si cross‐polarization/magic‐angle spinning NMR spectroscopy. Subsequent photopolymerization led to organic–inorganic hybrid networks and low volume shrinkage, ranging from 4.2 to 8.3%, depending on the molecular weight of the hybrid monomer applied. Highly filled composite materials with glass filler fractions greater than 75% showed attractive mechanical properties with Young's moduli of 2700–6200 MPa. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4274–4282, 2001  相似文献   

15.
Ring‐opening polymerization of epoxidized methyloleate (EMO) with various ionic‐coordinative initiators have been studied and compared with other internal epoxy monomers: benzyl 9,10‐epoxyoleoylether and cis‐4,5‐epoxyoctane. The structure and molecular weight of the resulting polymers have been studied by 1H‐ and 13C‐NMR, MALDI‐TOF‐MS, and size exclusion chromatography analysis. Polymers with higher molecular weight than those obtained with conventional cationic catalyst are obtained. These materials have been found to consist of a complex mixture of cyclic and linear polymer chains with different chain ends that can be related to the catalyst nature and the occurrence of two main polymerization mechanisms, the cationic and the ionic‐coordinative. In the polymerization of EMO, transesterification by‐side reactions leading to ester linkages in the main chain have been identified. These undesired reactions have been suppressed by copolymerization with small amounts of tetrahydrofuran with no substantial decrease in the polymer yield and molecular weight. Finally, the polymerization of EMO has been tested in a larger scale to prepare a renewable resource‐based polyether as starting material to produce polyether polyols for polyurethane applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Polymerization‐induced phase separation from an all‐monomeric system by direct copolymerization offers the formation of heterogeneous polymeric structures without reliance on polymer blends, block copolymers, or interpenetrating polymer networks. This study examines the potential for the formation of compositional heterogeneity in copolymer networks obtained by free‐radical photopolymerizations of initially homogeneous mixtures of bisphenol A glycidyl dimethacrylate and isodecyl methacrylate as the comonomer ratios and polymerization conditions are varied. Comonomer proportions that control thermodynamic stability prior to (as determined by cloud point measurements) and during [as determined by turbidity measurements coupled with near‐infrared (IR) spectroscopy] polymerization were shown to be a more influential factor on phase separation than irradiance‐imposed kinetic control of the photopolymerization process. Through photorheometry coupled with near‐IR and ultraviolet–visible (UV–Vis), the onset of phase separation was shown to occur at very low conversions and always prior to gelation (as estimated by the crossover of G′/G″). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1796–1806  相似文献   

17.
Poly(butylene terephthalate) (PBT)/styrene‐acrylonitrile copolymer (SAN) blends were investigated with respect to their phase morphology. The SAN component was kept as dispersed phase and PBT as matrix phase and the PBT/SAN viscosity ratio was changed by using different PBT molecular weights. PBT/SAN blends were also compatibilized by adding methyl methacrylate‐co‐glycidyl methacrylate‐co‐ethyl acrylate terpolymer, MGE, which is an in situ reactive compatibilizer for melt blending. In noncompatibilized blends, the dispersed phase particle size increased with SAN concentration due to coalescence effects. Static coalescence experiments showed evidence of greater coalescence in blends with higher viscosity ratios. For noncompatibilized PBT/SAN/MGE blends with high molecular weight PBT as matrix phase, the average particle size of SAN phase does not depend on the SAN concentration in the blends. However noncompatibilized blends with low molecular weight PBT showed a significant increase in SAN particle size with the SAN concentration. The effect of MGE epoxy content and MGE molecular weight on the morphology of the PBT/SAN blend was also investigated. As the MGE epoxy content increased, the average particle size of SAN initially decreased with both high and low molecular weight PBT phase, thereafter leveling off with a critical content of epoxy groups in the blend. This critical content was higher in the blends containing low molecular weight PBT than in those with high molecular weight PBT. At a fixed MGE epoxy content, a decrease in MGE molecular weight yielded PBT/SAN blends with dispersed nanoparticles with an average size of about 40 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
The polyaddition of bisphenol A diglycidyl ether with bis[4‐(P,P‐diphenylphosphinyloxy)phenyl] sulfone catalyzed by quaternary onium salt, such as tetrabutylammonium chloride afforded a new phosphorus‐containing polyether with good solubility in common organic solvents. Having studied various factors affecting the reaction, such as temperature, catalyst concentration, reaction time, etc., an appropriate polyaddition condition was suggested as using 5 mol % of suitable quaternary ammonium or phosphonium salt in polar solvent at 150°C within 25 h in an ampule for producing high molecular weight polymer. A number of polyethers bearing pendent phosphinate ester groups from the polyaddition of certain bis(epoxide)s and bis(phosphinate)s were synthesized under the above condition and characterized by GPC, IR, and NMR. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1009–1016, 1999  相似文献   

19.
Structure formation by coupling between formation of crosslinking points and liquid–liquid phase separation was investigated for aqueous methyl cellulose solution by small‐angle X‐ray scattering (SAXS) and light scattering (LS) techniques. The sol–gel phase diagram and the SAXS results suggested that the liquid–liquid phase separation occurred before gelation. By LS measurements, the structure due to the liquid–liquid phase separation was directly observed. By applying speckle analysis on the LS profiles, it was suggested that the gelation and the phase separation strongly coupled each other: the increase in the apparent molecular weight by crosslinking induced the liquid–liquid phase separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 168–174, 2010  相似文献   

20.
Three types of linear thiol‐functionalized siloxane oligomers and three types of ene‐functionalized oligomers were synthesized and subsequently photopolymerized. Within each type of thiol‐functionalized oligomer, the ratio of mercaptan repeat units to nonreactive phenyl repeat units was varied to manipulate both the crosslink density and the degree of secondary interactions through π–π stacking. Similarly, the repeat units of the three ene‐functionalized oligomers are composed of allyl‐functional monomers, benzene‐functional monomers, and octyl‐functional monomers in varying ratios of benzene:octyl but with a constant fraction of allyl moieties. The structural composition of the siloxane oligomers plays a pivotal role in the observed material properties of networks formed through thiol–ene photopolymerization. Networks with a high concentration of thiol functionalities exhibit higher rubbery moduli, ultimate strengths, and Young's moduli than networks with lower thiol concentrations. Moreover, the concentration of functionalities capable of participating in secondary interactions via hydrogen bonding or π–π stacking directly impacts the network glass transition temperature and elasticity. The combination of low crosslink density and high secondary interactions produces networks with the greatest toughness. Finally, the fraction of octyl repeats correlates with the hydrophobic nature of the network. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号