首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The so‐called “fundamental equation for gradient elution” has been used for modeling the retention in gradient elution. In this approach, the instantaneous retention factor (k) is expressed as a function of the change in the modifier content (φ(ts)), ts being the time the solute has spent in the stationary phase. This approach can only be applied at constant flow rate and with gradients where the elution strength depends on the column length following a f(t?l/u) function, u being the linear mobile phase flow rate, and l the distance from the column inlet to the location where the solute is at time t measured from the beginning of the gradient. These limitations can be solved by using the here called “general equation for gradient elution”, where k is expressed as a function of φ(t,l). However, this approach is more complex. In this work, a method that facilitates the integration of the “general equation” is described, which allows an approximate analytical solution with the quadratic retention model, improving the predictions offered by the “linear solvent strength model.” It also offers direct information about the changes in the instantaneous modifier content and retention factor, and gives a meaning to the gradient retention factor.  相似文献   

3.
Unbonded silicon oxynitride and silica high‐performance liquid chromatography stationary phases have been evaluated and compared for the separation of basic compounds of differing molecular weight, pKa, and log D using aqueous/organic mobile phases. The influences of percentage of organic modifier, buffer pH, and concentration in the mobile phase on base retention were investigated on unbonded silicon oxynitride and silica phases. The results confirmed that unbonded silicon oxynitride and silica phases demonstrated excellent separation performance for model basic compounds and both the unbonded phases examined possessed a hydrophobic/adsorption and ion‐exchange character. The silicon oxynitride stationary phase exhibited high hydrophilicity compared with silica with a reversed‐phase mobile phase. An ion‐exclusion‐type mechanism becomes predominant for the separation of three aimed bases on the silicon oxynitride column at pH 2.8. Different from silicon oxynitride stationary phase, no obvious change for the retention time of three model bases on silica stationary phase at pH 2.8 can be observed.  相似文献   

4.
5.
The coupling of RP‐LC to electron capture detection (ECDNi63) is described. To reduce the amount of mobile phase entering into the detector, interfacing was performed via a Scott‐type spray chamber. The performance of RP‐LC/ECDNi63 was evaluated for pharmaceutical analysis and the results show that the system is able to work in a routine environment using columns with 2 mm id and common amounts of the organic modifiers methanol or ACN in the mobile phase. Because of the high sensitivity and selectivity toward electrophilic compounds, the use of this detector opens possibilities for the analysis of impurities down to the 0.05% level of active pharmaceutical ingredients (API).  相似文献   

6.
A systematic study of the behavior of several common mobile‐phase volume markers using traditional and polar‐group‐containing reversed‐phase stationary phases is presented. Examined mobile‐phase volume markers include two neutral molecules, uracil and thiourea, concentrated (0.10 M) and dilute (0.0001 M) KNO3, and D2O. Mobile‐phase volumes are examined over the entire reversed‐phase mobile‐phase range of 100% water to 100% methanol or acetonitrile. The behavior of these mobile‐phase volume markers is compared with a maximum theoretical value (i.e. the void volume), as determined by pycnometry. The data suggest that: (i) uracil begins to fail as a mobile‐phase volume marker in mobile phases below about 40% strong solvent for polar group containing phases; (ii) in nearly all cases, the mobile‐phase volume measured dynamically is smaller than the pycnometric void volume; (iii) a significant dependence of measured mobile‐phase volume on salt concentration is seen on the polar endcapped phase, which is not observed on the traditional and embedded polar group phase; and (iv) D2O does not work well as a mobile‐phase volume marker with polar‐group‐containing phases, possibly due to interaction with the stationary phase polar group.  相似文献   

7.
In the present study, an easy and efficient method based on the serial coupling of analytical reversed‐phase and zwitterionic hydrophilic interaction liquid chromatography was developed for the simultaneous separation of polar and nonpolar phenols occurring in wine. The zwitterionic hydrophilic column was connected in series to the reversed‐phase one via a T‐piece, with which the ACN content in eluent of the second dimension was increased, in order to cope the solvent strength incompatibility between the two columns. The final mobile phase at low‐flow rate (≤0.5 mL/min), high‐ACN content (90%), and low‐salt concentration was directed to an ESI‐TOF‐MS , for high accurate mass detections. The developed method was applied for the identification of target phenols in several wines. Retention time and peak width intra‐ and interday repeatability studies proved the reliability of the method for the simultaneous analysis of all the polar and nonpolar analytes in wine. The serial reversed‐phase/zwitterionic hydrophilic interaction liquid chromatography coupling offered the possibility to enlarge the number of identified compounds and it represents a valid approach for nontarget analysis of complex samples by a single injection.  相似文献   

8.
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds.  相似文献   

9.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

10.
《Electrophoresis》2018,39(12):1504-1511
Via the facile ring‐opening reaction of epoxy groups with quinine, a novel polymer monolith with quaternary ammonium for reversed‐phase/strong anion‐exchange mixed‐mode has been fabricated for pressurized capillary electrochromatography (pCEC). Optimization on the preparation of quinine‐modified monoliths has been investigated, and characteristics including morphology, permeability, mechanical stability, reproducibility, and column performance have been also studied. Active quaternary ammonium groups were conveniently produced to generate cationic action sites and stable anodic electroosmotic flow. Multiple interactions including reversed‐phase, strong anion‐exchange, electrostatic repulsion and π–π stacking interactions were obtained. Satisfactory separation capability of various analytes such as alkylbenzenes, polycyclic aromatic hydrocarbons, benzoic acid and its homologs, and β2‐receptor excitants has been achieved. Applied to the real sample, the good resolution of three alkaloids in Corydalis yanhusuo were achieved by pCEC with the quinine‐modified monolith. The results light a potential access to facilely fabricating quaternary ammonium‐functionalized polymer monolith with multiple interactions for efficient electrochromatography profiling of various compounds.  相似文献   

11.
Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one‐step by both reversed‐phase and normal‐phase high‐speed counter‐current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n‐hexane–ethyl acetate–methanol–acetic acid–water (1:10:0.2:0.2:20) by reversed‐phase high‐speed counter‐current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n‐hexane–ethyl acetate–methanol–acetic acid–water (0.2:10:2:1:5) by normal‐phase high‐speed counter‐current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed‐phase and normal‐phase high‐speed counter‐current chromatography to separate high‐polarity of low‐molecular‐weight substances.  相似文献   

12.
Biocompatible magnetic nanoparticles that featured divinylbenzene and sulfonate functionalities were used for the magnetic solid‐phase extraction of five angiotensin II receptor antagonists from human urine and plasma samples based on a reversed‐phase and cation‐exchange mixed‐mode mechanism. Under the optimized extraction conditions, coupled to high‐performance liquid chromatography with fluorescence detection, this proposed method was found to be accurate and precise with relative standard deviations of less than 11.7%, and a good recovery of 80.1–119.5% for both samples. The linear ranges were 0.2–2000 and 0.2–2500 ng/mL along with correlation coefficients above 0.9923 and 0.9928 for urine and plasma samples, respectively. Limits of detection were 0.01–5.74 and 0.01–1.31 ng/mL, respectively. The proposed magnetic solid‐phase extraction based on the magnetic nanoparticles functionalized with divinylbenzene and sulfonate was a reliable and convenient sample pretreatment method and had the potential for isolating and enriching the angiotensin II receptor antagonists in biological samples.  相似文献   

13.
Radix isatidis is a famous anti‐influenza virus herbal medicine traditionally taken as a water decoction. However, the chemical fingerprint analysis of Radix isatidis is dominantly based on RPLC, from which it is difficult to obtain fingerprint information of hydrophilic compounds. Here, we developed the separation of Radix isatidis by RPLC and hydrophilic interaction chromatography, comparing the traditional RPLC fingerprint with the hydrophilic interaction chromatography fingerprint. Besides, an anti‐viral assay of Radix isatidis was conducted to evaluate its efficacy. The fingerprint–efficacy relationships between the fingerprints and the anti‐viral activity were further investigated with principal component regression analysis. The results showed that the anti‐viral activity correlated better with the hydrophilic interaction chromatography fingerprint than with the RPLC fingerprint. This study indicates that hydrophilic interaction chromatography could not only be a complementary method to increase the fingerprint coverage of conventional RPLC fingerprint, but also can better represent the efficacy and quality of Radix isatidis.  相似文献   

14.
Organoleptic properties of flaxseed oil deteriorate during storage due to methionine oxidation in its major cyclolinopeptides. Cyclolinopeptide E was previously identified as being responsible for the manifestation of bitter taste with flaxseed oil ageing. We developed a chromatographic procedure to monitor the oxidation of major cyclic peptides in flaxseed oil. We also used liquid chromatography with mass spectrometry and high‐efficiency core–shell reversed‐phase sorbents to study the separation of cyclolinopeptides in detail. The KinetexTM family of stationary phases (C8, C18, phenyl‐hexyl) was tested, along with the standard porous LunaTM C18(2) media. We found that only the phenyl‐hexyl stationary phase allows for complete resolution of major cyclolinopeptides, thus permitting direct UV monitoring of degree of conversion for cyclolinopeptide B into C and L into E. We also report, for the first time, a significant effect of peak splitting for some methionine S‐oxide (Mso) containing cyclolinopeptides, which most likely appear due to diastereomerization. This results in poor separation efficiency for cyclolinopeptides F, G, and E, and gives baseline resolution of diastereomeric pairs for cyclolinopeptides I and P. Thus, a single oxidation of cyclolinopeptide N yields three distinct chromatographic peaks corresponding to cyclolinopeptide T (cyclo‐MsoLMPFFWV, reported for the first time) and pair of cyclolinopeptide I (cyclo‐MLMsoPFFWV) diastereomers.  相似文献   

15.
The retention characteristics of five stationary phases were tested by using a selection of 5′‐mononucleotides and nucleosides with the aim to develop a simple, rapid and sensitive reversed‐phase liquid chromatography method without ion‐pair reagent usage. The method was optimized by changes in temperature, pH and ionic strength on a column showing a superior performance. The mobile phase consisted of a mixture of 0.05 M phosphate buffer and methanol, delivered at a flow rate of 0.4 mL/min and based on a gradient program. UV detection was used at a 254 nm wavelength. The method was validated for a quantitative analysis of 5′‐mononucleotides and nucleosides in wild edible mushrooms. For all nucleosides and nucleotides, the LOD and LOQ were less than 0.02 and 0.07 μg/mL, respectively. Validation parameters yielded recovery rates between 68.6 and 98.2%, with a precision expressed as a relative standard deviation of 7.6–15.3%. The content of 5′‐mononucleotides and nucleosides was determined for 10 samples of wild edible mushrooms found in Croatia and, accordingly, the equivalent umami concentrations were calculated.  相似文献   

16.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

17.
This paper describes the synthesis and chromatographic evaluation of a new polar‐embedded stationary phase, which utilized 2,4,6‐trichloro‐1,3,5‐triazine as the spacer. The resulting materials were characterized by elemental analysis, IR, and solid‐state 13C NMR. Empirical test mixtures were utilized to evaluate the column, and showed that it had good performance for basic compounds and high selectivity for polyaromatic hydrocarbons. Moreover, the novel stationary phase has unique property, especially in the separation of “homologous alkaloids” from natural products.  相似文献   

18.
The separation of polyethylene glycols and maleimide‐substituted polyethylene glycol derivatives based on the number of maleimide end‐groups under critical liquid chromatography conditions has been investigated on a reversed‐phase column. The critical solvent compositions for nonfunctional polyethylene glycols and bifunctional maleimide‐substituted polyethylene glycols were determined to be identical at about 40% acetonitrile in water on a reversed‐phase octadecyl carbon chain‐bonded silica column using mixtures of acetonitrile and water of varying composition as the mobile phase at 25°C. The maleimide‐functionalized polyethylene glycols were successfully separated according to maleimide functionality (with zero, one, two, or three maleimide end‐groups, respectively) under the critical isocratic elution conditions without obvious effect of molar mass. The separation was mainly due to the hydrophobic interaction between the maleimide end‐groups and the column packing. Off‐line matrix‐assisted laser desorption/ionization time of flight mass spectrometry was used to identify the repeating units and, especially, the end‐groups of the maleimide‐substituted polyethylene glycols. Liquid chromatography analysis at critical conditions could provide useful information to optimize the synthesis of functional polyethylene glycols. To our knowledge, this is the first report of the baseline separation of maleimide‐functionalized polyethylene glycols based on the functionality independent of the molar mass without derivatization by isocratic elution.  相似文献   

19.
The poor recovery of large biomolecules is a well‐known issue in reversed‐phase liquid chromatography. Several papers have reported this problem, but the reasons behind this behavior are not yet fully understood. In the present study, state‐of‐the‐art reversed‐phase wide‐pore stationary phases were used to evaluate the adsorption of therapeutic monoclonal antibodies. These biomolecules possess molar mass of approximately 150 000 g/mol and isoelectric points between 6.6 and 9.3. Two types of stationary phases were tested, the Phenomenex Aeris Widepore (silica based), with 3.6 μm superficially porous particles, and the Waters Acquity BEH300 (ethylene‐bridged hybrid), with 1.7 μm fully porous particles. A systematic investigation was carried out using 11 immunoglobulin G1, G2, and G4 antibodies, namely, panitumumab, natalizumab, cetuximab, bevacizumab, trastuzumab, rituximab, palivizumab, belimumab, adalimumab, denosumab, and ofatumumab. All are approved by the Food and Drug Administration and the European Medicines Agency in various therapeutic indications and are considered as reference antibodies. Several test proteins, such as human serum albumin, transferrin, apoferritin, ovalbumin, and others, possessing a molar mass between 42 000 and 443 000 g/mol were also evaluated to draw reliable conclusions. The purpose of this study was to find a correlation between the adsorption of monoclonal antibodies and their physicochemical properties. Therefore, the impact of isoelectric point, molar mass, protein glycosylation, and hydrophobicity was investigated. The adsorption of intact antibodies on the stationary phase was significantly higher than that of proteins of similar size, isoelectric point, or hydrophobicity. The present study also demonstrates the unique behavior of monoclonal antibodies, contributing some unwanted and unpredictable strong secondary interactions.  相似文献   

20.
Protein retention is very sensitive to the change of solvent composition in reversed‐phase liquid chromatography for so called “on–off” mechanism, leading to difficulty in mobile phase optimization. In this study, a novel 3‐chloropropyl trichlorosilane ligand bonded column was prepared for protein separation. The differences in retention characteristics between the 3‐chloropropyl trichlorosilane ligand bonded column and n‐alkyl chain modified (C2, C4, C8) stationary phases were elucidated by the retention equation . Retention parameters (a and c) of nine standard proteins with different molecular weights were calculated by using homemade software. Results showed that retention times of nine proteins were similar on four columns, but the 3‐chloropropyl trichlorosilane ligand bonded column obtained the lowest retention parameter values of larger proteins. It meant that their retention behavior affected by acetonitrile concentration would be different due to lower |c| values. More specifically, protein elution windows were broader, and retentions were less sensitive to the change of acetonitrile concentration on the 3‐chloropropyl trichlorosilane ligand bonded column than that on other columns. Meanwhile, the 3‐chloropropyl trichlorosilane ligand bonded column displayed distinctive selectivity for some proteins. Our results indicated that stationary phase with polar ligand provided potential solutions to the “on–off” problem and optimization in protein separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号