首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
《Tetrahedron: Asymmetry》2014,25(6-7):583-590
Herein we report the intramolecular alkylation of nitronates of methyl-5-O-benzyl-3,6-deoxy-6-nitro-β-d-glucofuranoside and methyl-5-O-benzyl-3,6-deoxy-6-nitro-α-d-glucofuranoside into the corresponding 2-oxabicyclo[2.2.1]heptane derivatives. Similarly, methyl-3-O-benzyl-5-deoxy-5-nitromethyl-β-d-xylofuranoside and methyl-3-O-benzyl-5-deoxy-5-nitromethyl-α-d-xylofuranoside were cyclized to (1R,3R,4S,5R,7R)-7-benzyloxy-3-methoxy-5-nitro-2-oxabicyclo[2.2.1]heptane and (1R,3S,4S,5R,7R)-7-benzyloxy-3-methoxy-5-nitro-2-oxabicyclo[2.2.1]heptane, respectively. These 2-oxabicyclo[2.2.1]heptane derivatives were eventually transformed into enantiopure methyl (1S,2S,3R,4S,5R)-2-amino-2,3-dihydroxycyclopentanecarboxylate and this novel β-amino acid was incorporated into peptides.  相似文献   

2.
In the presence of HSO3F/Ac2O in CH2CL2, 2-exo- and 2-endo-cyano-5,6-exo-epoxy-7-oxabicyclo[2.2.1]hept-2-yl acetates ( 6a , b ) gave products derived from the epoxide-ring opening and a 1,2-shift of the unsubstituted alkyl group (σ bond C(3)–C(4)). In contrast, under similar conditions, the 5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ( 6c ) gave 5-oxo-2-oxabicyclo[2.2.1]heptane-3,7-diyl diacetates 20 and 21 arising from the 1,2-shift of the acyl group. Acid treatment of 5,6-exo-epoxy-2,2-dimethoxy-7-oxabicyclo[2.2.1]heptane ( 6d ) and of 5,6-exo-epoxy-2,2-bis(benzyloxy)-7-oxabicyclo[2.2.1]heptane ( 6e ) gave minor products arising from epoxide-ring opening and the 1,2-shift of σ bond C(3)–C(4) and major products ( 25 , 29 ) arising from the 1,3-shift of a methoxy and benzyloxy group, respectively. Under similar conditions, 5,6-exo-epoxy-2,2-ethylenedioxy-7-oxabicyclo[2.2.1]heptane ( 6f ) gave 1,1-(ethylenedioxy)-2-(2-furyl)ethyl acetate ( 32 , major) and a minor product 33 , arising from the 1,2-shift of σ bond C(3)–C(4). The following order of migratory aptitudes for 1,2-shifts toward electron-deficient centers has been established: acyl > alkyl > alkyl α-substituted with inductive electron-withdrawing groups. This order is valid for competitive Wagner-Meerwein rearrangements involving equilibria between carbocation intermediates with similar exothermicities.  相似文献   

3.
IrCl3·3H2O or FeCl3-catalyzed convenient synthesis of 3-hydroxyphthalates has been achieved by a Diels-Alder reaction of furans with dimethyl acetylenedicarboxylate, followed by ring-opening aromatization reaction of the Diels-Alder adducts, 7-oxabicyclo[2.2.1]hepta-2,5-diene derivatives. In addition, 7-azabicyclo[2.2.1]hepta-2,5-diene derivative, derived from N-Boc-pyrrole and dimethyl acetylenedicarboxylate, also converted into 3-aminophthalate derivative.  相似文献   

4.
The first total synthesis of enantiopure methyl (1R,2R,4S)-2-amino-4-hydroxycyclopentanecarboxylate was carried out according to our recent novel strategy for the transformation of nitrohexofuranoses into cyclopentylamines, which is based on an intramolecular cyclisation leading to 2-oxabicyclo[2.2.1]heptane derivatives. It was observed that one of the substrate anomers produces an elimination rather than a cyclisation reaction. These and other differences in the reaction paths for this key step were rationalised by means of molecular mechanism based calculations.  相似文献   

5.
《Tetrahedron letters》1987,28(33):3865-3868
The rearrangement of 7-oxabicyclo[2.2.1]hept-2-enes to 2-oxabicyclo[2.2.1]heptane derivatives, when reacted with iodine and silver acetate, provides further insight into the migratory preferences of alkyl groups involved in Wagner-Meerwein 1,2-bond shifts in unbiased situations.  相似文献   

6.
The endocyclic double bond C(2), C(3) in 5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene ( 1 ) can he coordinated selectively on its exo-face before complexation of the exocyclic s-cis-butadiene moiety. Irradiation of Ru3(CO)12 or Os3(CO)12 in the presence of 1 gave tetracarbonyl [(1R,2R, 3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene)]ruthenium ( 6 ) or -osmium ( 8 ). Similarly, irradiation of Cr(CO)6 or W(CO)6 in the presence of 1 gave pentacarbonyl[(1R, 2R, 3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]chromium (10) or -tungsten (11) . Irradiation of complexes 6 and 11 in the presence of 1 led to further CO substitution giving bed-tricarbonyl-ae-bis[(1R,2R,3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]ruthenium ( 7 ) and trans-tetracarbonyl[(1R,2R,3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo-[2.2.1]hept-2-ene)]tungsten (12) , respectively. The diosmacyclobutane derivative cis-m?-[(1R,3R,3S,4S)-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hepta-2,3-diyl)]bis(tetracarbonyl-osmium) (Os-Os) (9) wa also obtained. The Diels-Alder reactivity of the exocyclic s-cis-butadiene moiety in complexs 7 and 8 was found to be significantly higher than that of the free triene 1 .  相似文献   

7.
Controlled ozonolysis of 2,3,5,6-tetramethylidene-7-oxabicyclo[2.2.1]heptane ( 1 ) afforded 3,5,6-trimethylidene-7-oxabicyclo[2.2.1]heptan-2-one ( 2 ). Ozonolysis of 2 gave a 1:1 mixture of 3,5-dimethylidene-7-oxa-bicyclo[2.2.1]heptane-2,6-dione ( 3 ) and 3,6-dimethylidene-7-oxabicyclo[2.2.1]heptane-2,5-dione ( 4 ). The He(Iα) photoelectron (PE) spectra of 2 and 4 have been recorded. Comparison with the PE data of related systems, and with the result of ab initio STO-3G calculations, confirm the existence of significant through-bond interactions between the oxygen lone-pair orbitals n(CO) of the carbonyl functions and n(O) of the O(7) ether bridge.  相似文献   

8.
Asymmetric Diels–Alder reactions between 2-methylfuran and chiral (E)-1,2-dideoxy-1-nitroalkenes derived from d-mannose and d-galactose were carried out at room temperature, under 13 kbar pressure. The processes were completely regioselective, and only the four adducts with penta-O-acetyl-1′-C-(4-methyl-3-nitro-7-oxabicyclo[2.2.1]hept-5-en-2-yl)pentitols structures were formed in each case. These adducts, as well as those arising from cycloadditions of the same nitroalkenes and furan, have been converted into chiral derivatives, such as 2-furyl substituted 1-nitrosugars, 2-glyco-4-methyl-3-nitro-7-oxabicyclo[2.2.1]heptanes, and 5,6-exo-epoxy-2-glyco-3-nitro-7-oxabicyclo[2.2.1]hept-5-enes.  相似文献   

9.
The in situ reaction of Cd(ClO4)2·6H2O with 7-oxabicyclo[2.2.1]-5-heptene-2,3-dicarboxylic anhydride in the presence of lithium hydroxide affords a 2-D CdII coordination polymer, [Cd(L)(H2O)] (1) (L?=?7-oxabicyclo[2.2.1]-5-heptene-2,3-dicarboxylate), which exhibits an unusual (3,6)-connected (46.66.83)(43)2 CdI2-type topology. The luminescent and thermal properties of 1 were investigated.  相似文献   

10.
Two free-radical cyclization reactions with the radical at the chiral C4 of the pentose sugar and the intramolecularly C1-tethered olefin (on radical precursors 8 and 17) gave a new diastereospecific C4-C8 bond in dimethylbicyclo[2.2.1]heptane 9, whereas the new C4-C7 bond in 7-methyl-2-oxabicyclo[2.2.1]heptanes 18a/18b gave trans and cis diastereomers, in which the chirality of the C4 center is fully retained as that of the starting material. It has been shown how the chemical nature of the fused carba-pentofuranose scaffolds, dimethylbicyclo[2.2.1]heptane 9 vis-a-vis 7-methyl-2-oxabicyclo[2.2.1]heptanes 18a/18b (C7-Me in the former versus 2-O- in the latter), dictates the stereochemical outcome both at the Grignard reaction step as well as in the free-radical ring-closure reaction. The formation of pure 1,8-trans-bicyclo[2.2.1]heptane 9 from 8 suggests that the boat-like transition state is favored due to the absence of steric clash of the bulky 1(S)-O-p-methoxybenzyl (PMB) and 7(R)-Me substituents (both in the α-face) with that of the 8(R)-CH(2)(?) radical in the β-face. The conversion of 17 → 18a-7(S) and 18b-7(R) in 6:4 ratio shows that the participation of both the chair- and the boat-like transition states is likely.  相似文献   

11.
The first total synthesis of enantiopure methyl (3aR,4S,5S,6R,6aS)-4-benzyloxycarbonylamino-6-hydroxy-2,2-dimethyl-tetrahydro-3aH-cyclopenta[d][1,3]dioxole-5-carboxylate has been carried out according to our recent novel strategy for the transformation of nitrohexofuranoses into cyclopentylamines. This approach is based on an intramolecular cyclization that leads to 2-oxabicyclo[2.2.1]heptane derivatives. E1cb elimination of the methoxy substituent was observed when attempting to incorporate these β-amino acid into peptides. As a result, the synthesis and incorporation of the first polyhydroxylated 5-aminocyclopent-1-enecarboxylic acid into peptides were developed.  相似文献   

12.
The l-dimethoxymethyl-5,6-dimethyldene-7-oxabicyclo[2.2.1]hept-2-ene ( 9 ) has been prepared. On treatment with Fe2(CO)9, the endocyclic double bond C(2)?C(3) was coordinated first giving the corresponding exo-Fe(CO)4 complex 10 . The latter reacted with Fe2(CO)9 and afforded cis-heptacarbonyl-μ-[1RS,2SR,3RS,4SR,5RS,6SR-2,3-η: C5,6,C-η-(1-(dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]diiron ( 11 ) as a major product. On heating, 11 underwent deoxygenation of the 7-oxabicyclo[2.2.1]heptene moiety yielding tricarbonyl[C,5,6,C-η-(1-(dimethoxymethyl)-5,6-dimethylidenecyclohexa-1,3-diene)]iron ( 13 ). In MeOH, a concurrent, regioselective methoxycarbonylation was observed giving tricarbonyl[C,3,4,C-η-(methyl 5-(dimethoxymethyl)-3,4-dimethylidenecyclohexa-1,5-diene-1-carboxylate)]iron ( 14 ). Oxidative removal of the Fe(CO)3 moiety in 13 and 14 did not afford the expected ortho-quinodimethane derivatives but led to CO insertions giving 2,3-dihydro-2-oxo-1Hindene-4-carbaldehyde ( 20 ) and methyl 7-formyl-2-3-dihydro-2-oxo-lH-indene-5-carboxylate ( 21 ), respectively.  相似文献   

13.
《Tetrahedron: Asymmetry》2000,11(19):3879-3882
Homochiral 7-oxa-2-azabicyclo[2.2.1]heptane and 8-oxa-6-azabicyclo[3.2.1]octane ring systems can be synthesized by reaction of specifically protected phosphoramidate derivatives of carbohydrates with (diacetoxyiodo)benzene or iodosylbenzene and iodine. The reaction mechanism goes through homolytic fragmentation of a hypothetical iodoamide intermediate. The N-radicals so generated participate in an intramolecular hydrogen abstraction reaction (IHA) to give the aforementioned bicycles.  相似文献   

14.
Arif Baran 《Tetrahedron》2004,60(4):861-866
The actions of AcX (X=Br, Cl) on 7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-diol diacetates and a transoid-epoxide prepared from the acetonide of cyclohexa-3,5-diene-cis-1,2-diol were studied. H2SO4-catalyzed cleavage of exo-cis-7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-diol diacetate with AcCl gave (1α,2α,3α,6β)-6-chloro-4-cyclohexene-1,2,3-triol triacetate, from which the corresponding chloroconduritol was obtained by trans-esterification (MeOH/HCl). A similar reaction of the exo-diacetate with AcBr in the presence of H2SO4 resulted in bromine addition. The formation of bromine from the reaction of AcBr and H2SO4 was observed by independent experiments. H2SO4-catalyzed reaction of endo-cis-7-oxa-bicyclo[2.2.1]hept-5-ene-2,3-diol diacetate with AcX (X=Br, Cl) gave (1α,2α,3β,6β)-6-halo-4-cyclohexene-1,2,3-triol triacetates. The reaction of the transoid-epoxide with AcX (X=Br, Cl) with no catalyst gave also (1α,2α,3β,6β)-6-halo-4-cyclohexene-1,2,3-triol triacetates.  相似文献   

15.
(1R, 2R, 4R)-2-endo-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl acetate ((?)-7) has been transformed into the all-cis-configurated 4L -4,5,6/0-trihydroxycyclohex-2-en-1-one derivatives (?)- 12 and (?)- 19 . (?)-Conduritol C ((?)- 3 ) was derived in a stereospecific manner from (?)- 12 .  相似文献   

16.
Novel nucleoside analogues based on bicyclo[2.2.1]heptene/heptane were prepared by linear synthesis starting from commercially available 1,2,3,4-tetrachloro-5,5-dimethoxycyclopentadiene 1. The crucial step of the synthesis was insertion of the amino group to the position 7 of the substituted bicyclo[2.2.1]heptene with anti-configuration by a Ritter reaction (H2SO4, AcOH, CH3CN). All nucleobases were constructed at this amino function. The prepared family of the target nucleosides was tested for cytostatic and antiviral activity.  相似文献   

17.
Stereoselective synthesis of 2-methylidene-3-[(Z)-(2-nitrophenylsulfenyl)methylidene]-7-oxabicyclo[2.2.1]-heptane ( 16 ), 1,4-epoxy-1,2,3,4-tetrahydro-5,8-dimethoxy-2-methylidene-3-[(Z)-(2-nitrophenylsulfenyl)methylidene]anthracene ( 18 ), and 1,4-epoxy-1,2,3,4-tetrahydro-5,8-dimethyoxy-2-methylidene-3-[(Z)-(phenylsulfenyl)-methylidene]anthracene ( 19 ) are presented. The Diels-Alder additions of these S-substituted dienes and those of 2,5-dimethylidene-3,6-bis{[(Z)-(2-nitrophenyl)sulfenyl]methylidene}-7-oxabicyclo[2.2.1]heptane ( 17 ) have been found to be face selective and ‘ortho’ regiospecific. The face selectivity depends on the nature of the dienophile. It is exo-face selective with bulky dienophiles such as ethylene-tetracarbonitrile (TCNE) and 2-nitro-1-butene and endo-face selective with methyl vinyl ketone, methyl acrylate, and 3-butyn-2-one. In the presence of a Lewis acid, the face selectivity of the Diels-Alder reaction can be reversed. The addition of the first equivalent of a dienophile to tetraene 17 is at least 100 times faster than the addition of the second equivalent of the same dienophile to the corresponding mono-adduct. The X-ray structure of the crystalline bis-adduct 43 , a 7-oxabicyclo[2.2.1]hepta-2,5-diene system annellated to two cyclohexene rings, resulting from the successive additions of methyl acrylate and methyl vinyl ketone to tetraene 17 is presented. Only one of the two endocyclic double bonds of the 7-oxabicyclo[2.2.1]hepta-2,5-diene deviates from planarity, the substituents bending towards the endo face by 5.7°.  相似文献   

18.
In the presence of Me3Al, 1-cyanovinyl acetate added to 2,2′-ethylidenebis[3,5-dimethylfuran] ( 1 ) to give a 20:10:1:1 mixture of mono-adducts 4,5,6 , and 7 resulting from the same regiocontrol (‘para’ orienting effect of the 5-methyl substituent in 1 ). The additions of a second equiv. of dienophile to 4–7 were very slow reactions. The major mono-adducts 4 (solid) and 5 (liquid) have 2-exo-carbonitrile groups. The molecular structure of 4 (1RS,1′RS,2SR,4SR)-2-exo-cyano-4-[1-(3,5-dimethylfuran-2-yl)ethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate) was determined by X-ray single-crystal radiocrystallography. Mono-adducts 4 and 5 were saponified into the corresponding 7-oxanorbornenones 8 and 9 which were converted with high stereoselectivity into (1RS,1′SR,4RS,5RS,6RS)-4-[1-(3,5-dimethyl furan-2-yl)ethyl]-6-exo-methoxy-1,5-endo-dimethyl-7-oxabicyclo [2.2.1]heptan-2-one dimethyl acetal ( 12 ) and its (1′RS-stereoisomer 12a , respectively. Acetal hydrolysis of 12a followed by treatment with (t-Bu)Me2SiOSO2CF3 led to silylation and pinacol rearrangement with the formation of (1RS,1′RS,5RS,6RS)-4-[(tert-butyl)dimethy lsilyloxy]-1-(3,5-dimethylfuran-2-yl)ethyl]-5-methoxy-6-methyl-3-methylidene- 2-oxabicyclo[2.2.1]heptane ( 16 ). In the presence of Me3Al, dimethyl acetylenedicarboxylate added to 12 giving a major adduct 19 which was hydroborated and oxidized into (1RS,1′RS,2″RS,3″RS,4SR,4″RS,5 SR,6SR)-dimethyl 5-exo-hydroxy-4,6-endo-dimethyl-1-[1-(3-exo,5,5-trimeth oxy-2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-2-yl)ethyl]-7-oxabicyclo [2.2.1]hept-2-ene-2,3-dicarboxylate ( 20 ). Acetylation of alcohol 20 followed by C?C bond cleavage afforded (1′RS,1″SR,2RS,2′″SR,3RS, 3″SR,4RS,4″SR,5RS)-dimethyl {3-acetoxy-2,3,4,5-tetrahydro-2,4-dimethyl-5-[1-(3-exo,5,5-trimethoxy ?2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-1-yl)-ethyl]furan-2,5-diyl} bis[glyoxylate] ( 24 ).  相似文献   

19.
The Diels-Alder adduct (±)- 3 of 2,4-dimethylfuran and 1-cyanovinyl acetate was converted stereoselectively into benzyl 6-(4-chlorophenylsulfonyl)-1,3-exo,5-trimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl ( 26 ) and -2-endo-yl ether ( 36 ). Addition of LiAlH4 to the latter led to the 3-O-benzyl derivatives 28 and 37 of (1RS,2SR,3SR,6SR)- and (1RS,2SR,3RS,6SR)-5-(4-chlorophenylsulfonyl)-2,4,6-trimethylcyclohex-4-ene-1,3-diol, respectively. Methylenation of 6-exo-(4-chlorophenylthio)-1-methyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ( 16 ), obtained by reaction of (±)- 3 with 4-Cl-C6H4SCl and saponification gave, 6-exo-(4-chlorophenylthio)-1-methyl-3,5-dimethylidene-7-oxabicyclo [2.2.1]heptan-2-one ( 43 ), the reduction of which with K-Selectride afforded 6-exo-(4-chlorophenylthio)-1,3-endo-dimethyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-endo-ol ( 44 ). The 3-O-benzyl derivative 48 of (1RS,2RS,3RS,6SR)-5-(4-chlorophenylsulfonyl)- 2,4,6-trimethylcyclohex-4-ene-1,3-diol was derived from 44 via based-induced oxa-ring opening of benzyl 6-endo-(4-chlorophenylsulfonyl)-1,3-endo-5-endo-trimethyl-7-oxabicyclo[2.2.1]hept-2-endo-yl ether ( 49 ). Benzylation of 28 , followed by reductive desulfonylation and oxidative cleavage of the cyclohexene moiety afforded (2RS,3SR,4RS,5RS)-3,5-bis(benzyloxy)-2,4-dimethyl-6-oxoheptanal ( 32 ).  相似文献   

20.
The results of the ring opening of 1-phenyl-2,2-dimethyl-7-oxabicyclo[4.1.0]heptane (2) under acidic conditions show a marked diminution in the regioselectivity and in the cis stereoselectivity with respect to the corresponding non-methylated epoxide. The percentage composition of the reaction products of epoxide 2 varies significantly with the solvent medium employed. Possible explanations of the observed stereochemical results, particularly with respect to the steric inhibition of resonance of the intermediate carbocation and to the solvent effects, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号