首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The assignment of the signals in the 13C and 1H NMR spectra of N-phenyl-2,4-dimethylbuta-1,3-diene-1,4-sultam is difficult for the signal pairs C-2 and C-4, C-1 and C-3, (C-1)? H, (C-2)? CH3 and (C-4)? CH3. The 13C NMR spectrum recorded under gated decoupling conditions provide long-range couplings which make possible an unambiguous assignment of the 13C NMR signal pairs. Application of the 1H CW off-resonance decoupling technique in recording the 13C NMR spectra enables the assignment information from the 13C NMR spectrum to be transferred to the 1H NMR spectrum.  相似文献   

2.
In order to detect small variations in 13C isotopomers concentrations, high sensitivity, accuracy and precision have to be achieved. To assess such criteria, when using 13C NMR, 13C bi-labelled ethanol has been proposed as a molecular probe. Advantage has been taken of the pre-established structural relationship between the peak areas of the 13C NMR spectrum of this molecule, i.e. the ratio of signal areas is set to a fixed value. It is shown that the quality performance, required by quantitative 13C NMR spectroscopy, is not affected by a large reduction of the repetition delay using relaxation reagents.  相似文献   

3.
Complex nuclear magnetic resonance (NMR) signals of organic compounds containing multiple analogous substructures or mixtures pose a significant challenge to structural identification, thus resulting in frequent misassignment of structures. The GEMSTONE method, a single-scan technique that selectively excites a specific proton signal among the crowded NMR signals, was recently proposed as a solution. However, its extension to the polarization transfer method for heteronuclear spin systems was unsuccessful. Herein, we present an extension method that addresses the altered heteronuclear polarization transfer efficiency and enables the acquisition of ultraselective 13C and 1H-13C correlation NMR subspectra with hertz-level signal selectivity in both dimensions. We demonstrate the effectiveness of this technique in the structural analysis of a chromopeptide pharmaceutical and a diastereomeric mixture of a fungicide.  相似文献   

4.
Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)‐TOCSY‐INEPT, is presented that allows the extraction of 13C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the 1H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled 1H spins, and subsequent relaying of the magnetization from 1H to 13C by direct INEPT transfer to generate 13C NMR subspectra. Simple consolidation of the subspectra yields 13C NMR spectra for individual isomers. Alternatively, CSSF‐INEPT with heteronuclear long‐range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the 13C NMR spectra for isomers containing multiple spin systems. A proof‐of‐principle validation of the CSSF‐TOCSY‐INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF‐TOCSY‐INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
All attempts to use in situ13C NMR in spectroelectrochemical studies, using static cells and unlabeled substrates, have failed due to the very long average time (several hours). In this paper, we demonstrated that steady-state free precession (SSFP) pulse sequence can enhance signal to noise ratio and reduces the average time of 13C NMR signals by more than one order of magnitude. The results showed that each 13C NMR spectrum during the electrochemical reduction of 9-chloroanthracene, in a static cell, can be acquired in eleven minutes. This short averaging time allowed the analysis of the reaction every 30 min during 3 h. The phase and truncation anomalies present in SSFP spectra were minimized using Traff apodization function and Krylov basis diagonalization method (KBDM).  相似文献   

6.
We have accomplished the synthesis of 13C‐labeled tautomycin at the C18, C19, C21, and C22 positions starting from 100 % [13C]triethylphosphonoacetate for the purpose of elucidating the dynamics and conformation of the C17–C26 moiety. NMR spectroscopy of 13C‐labeled tautomycin revealed strong binding with protein phosphatase type 1 and new features in the 13C NMR spectrum, such as the very small three‐bond coupling constants (2J).  相似文献   

7.
13C Fourier transform NMR has been used to characterize a random chemical structure of ureaformaldehyde resins. By comparison of 13C chemical shifts with synthesized standard derivatives from urea and formaldehyde the analysis of reacted formaldehyde was completed. In a 13C spectrum of resin each signal due to reacted formaldehyde (e.g., methylol group, methylene group, and dimethylene ether group) was isolated. Measurement of a 13C spectrum of resin by the gated decoupling of proton without nuclear Overhauser effect made a quantitative analysis of reacted formaldehyde possible. In this quantitative analysis a 13C quantity of carbonyl groups in urea residue can be directly compared with that of each combined formaldehyde.  相似文献   

8.
Method of quantitative analysis through latex‐state 13C NMR spectroscopy was established for in situ determination of epoxy group content of epoxidized natural rubber in latex stage. The epoxidized natural rubber latex was prepared by epoxidation of deproteinized natural rubber with freshly prepared peracetic acid in latex stage. The resulting epoxidized deproteinized natural rubber (EDPNR) latex was characterized through latex‐state 13C NMR spectroscopy. Chemical shift values of signals of latex‐state 13C NMR spectrum for EDPNR were similar to those of solution‐state 13C NMR spectrum for EDPNR. Resolution of latex‐state 13C NMR spectrum was gradually improved as temperature for the nuclear magnetic resonance (NMR) measurement increased to 70°C. Signal‐to‐noise ratio of latex‐state 13C NMR measurement was similar to that of solution‐state 13C NMR measurement at temperature above 50°C. The epoxy group content determined through latex‐state NMR spectroscopy was proved to be the same as that determined through solution‐state NMR spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Herein, we demonstrate “direct” 13C hyperpolarization of 13C‐acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir‐IMes; [IrCl(COD)(IMes)], (IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1‐13C‐acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE‐SHEATH) resulted in positive enhancements of up to ≈100‐fold in the 13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to 13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the 13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE‐SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism.  相似文献   

10.
Methods which induce site-specificity and sensitivity enhancement in solid-state magic-angle spinning NMR spectroscopy become more important for structural biology due to the increasing size of molecules under investigation. Recently, several strategies have been developed to increase site specificity and thus reduce signal overlap. Under dynamic nuclear polarization (DNP) for NMR signal enhancement, it is possible to use cross-relaxation transfer induced by select dynamic groups within the molecules which is exploited by SCREAM-DNP (Specific Cross Relaxation Enhancement by Active Motions under DNP). Here, we present an approach where we additionally reintroduce the homonuclear dipolar coupling with rotational resonance (R2) during SCREAM-DNP to further boost the selectivity of the experiment. Detailed analysis of the polarization buildup dynamics of 13C-methyl polarization source and 13C-carbonyl target in 2-13C-ethyl 1-13C-acetate provides information about the sought-after and spurious transfer pathways. We show that dipolar-recoupled transfer rates greatly exceed the DNP buildup dynamics in our model system, indicating that significantly larger distances can be selectively and efficiently hyperpolarized.  相似文献   

11.
Data of 1H and 13C NMR spectra show that in 2,2??-bipyridyl, 1-vinyl-2(2??-pyridyl)benzimidazole, 1-vinyl-3-vinylsulfanyl-5-(2-furyl)-1,2,4-triazole, and 1-vinyl-5-vinylsulfanyl-3-(2-furyl)-5-vinylthio-1,2,4-triazole exists a weak intramolecular hydrogen bond between the heterocyclic fragments. It causes a downfield shift of the bridging proton signal in the 1H NMR spectrum by 0.6?C0.7 ppm and an increase in the corresponding direct coupling constant 13C-1H by 1.5?C2.0 Hz. These variations in the spectral parameters can be efficiently used in the conformational analysis for establishing with the use of NMR method which conformers are predominantly populated in the heterocyclic compounds.  相似文献   

12.
Herein, we demonstrate “direct” 13C hyperpolarization of 13C-acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir-IMes; [IrCl(COD)(IMes)], (IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1-13C-acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE-SHEATH) resulted in positive enhancements of up to ≈100-fold in the 13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to 13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the 13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE-SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism.  相似文献   

13.
In a heteronuclear 13C? {1H} selective population inversion 13C NMR spectrum a splitting, resulting from a (CH) coupling over more than one bond, can be detected even when no splitting is observed in the single-frequency 13C NMR spectrum. The relationship between the observed splitting, coupling constant and line width is discussed. A method is proposed from which the value of the coupling constant can be estimated, and its application illustrated by the splittings observed in the 13C NMR spectra of the mycotoxin, ochratoxin A.  相似文献   

14.
Copolymer networks synthesized from dilactide and diglycolide were characterized by solid-state 13C CPMAS NMR in terms of composition, cross-link density, and rate of cross-linking by UV irradiation. The latter is directly evident by a signal at 44 ppm in the 13C NMR spectrum. Comparison of solid-state NMR data with the determination of the gel content revealed that this NMR method is sensitive to the chemical cross-link density whereas the gel content is also influenced by physical constraints such as entanglement. Furthermore, these copolymer networks show a shape-memory effect, i.e. a temporary macroscopic shape can be programmed by heating the network above its glass transition temperature together with fixation during cooling. Reheating without fixation recovers the permanent shape. The recovery of the permanent shape could be followed by 1H DQ NMR buildup curves for a sample that was stretched by 80%.  相似文献   

15.
Carbon-13 NMR chemical shifts and one-bond carbon–hydrogen coupling constants have been obtained at 15·09 MHz. The trends in the carbon chemical shifts obtained for the pyrazines parallel those of monosubstituted benzenes and 2-substituted pyridines, except for the direct effect of substitution where the pyrazines resemble pyridines not benzenes. The substituent effects on the 13C NMR spectra are generally quite similar to those in the 1H NMR spectra. The 13C NMR spectrum of the tautomeric hydroxypyrazine has been compared with the 13C NMR spectra of 2-, 3- and 4-hydroxypyridines. Hydroxy compounds that can exist as a cyclic amide show a large meta substituent effect on the chemical carbon shift.  相似文献   

16.
Unambiguous identification of individual metabolites present in complex mixtures such as biofluids constitutes a crucial prerequisite for quantitative metabolomics, toward better understanding of biochemical processes in living systems. Increasing the dimensionality of a given NMR correlation experiment is the natural solution for resolving spectral overlap. However, in the context of metabolites, natural abundance acquisition of 1H and 13C NMR data virtually excludes the use of higher dimensional NMR experiments (3D, 4D, etc.) that would require unrealistically long acquisition times. Here, we introduce projection NMR techniques for studies of complex mixtures, and we show how discrete sets of projection spectra from higher dimensional NMR experiments are obtained in a reasonable time frame, in order to capture essential information necessary to resolve assignment ambiguities caused by signal overlap in conventional 2D NMR spectra. We determine optimal projection angles where given metabolite resonances will have the least overlap, to obtain distinct metabolite assignment in complex mixtures. The method is demonstrated for a model mixture composition made of ornithine, putrescine and arginine for which acquisition of a single 2D projection of a 3D 1H–13C TOCSY‐HSQC spectrum allows to disentangle the metabolite signals and to access to complete profiling of this model mixture in the targeted 2D projection plane. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
NMR spectroscopy is a very important and useful method for the structural analysis of oligosaccharides, despite its low sensitivity. We first applied conventional measuring methods, 2D DQF COSY, 1H–13C HSQC, and 1H–13C HMBC, and also the Double Pulsed Field Gradient Spin Echo (DPFGSE)‐TOCSY and DPFGSE‐NOESY/ROESY techniques to analyze a branched mannose pentasaccharide as a model of high mannose type N‐glycans in natural abundance. The NMR spectra of the model compound are very complex and difficult to analyze owing to overlapping signals. The superior selective irradiation capability of the DPFGSE technique is useful for fine structural and conformational analyses of such complex oligosaccharides. We here introduce a novel technique called DPFGSE‐Double‐Selective Population Transfer (SPT)‐Difference and DPFGSE‐NOE/ROE‐SPT‐Difference spectroscopy. The DPFGSE‐Double‐SPT‐Difference method involves irradiation of two peaks from one proton and the subtraction of higher and lower peaks from each spectrum. The DPFGSE‐NOE/ROE‐SPT‐Difference method involves the transfer of the magnetization polarized by NOE/ROE from the nuclei to the spin‐coupled nuclei through scalar spin–spin interaction using the SPT method. Even if the signals in the NMR spectra overlap, each signal can be accurately assigned. In particular, DPFGSE‐NOE/ROE‐SPT‐Difference is very useful for identifying sugar connectivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
《Analytical letters》2012,45(10):1657-1666
Abstract

Natural abundance 13C NMR spectra of a soluble aspirin and model mixtures of acetylsalicylic acid with buffering components have been recorded in the solid state by using the combined techniques of cross polarization, high-power decoupling and magic-angle spinning. The solid-state spectrum of the soluble aspirin tablet showed more resonances than the solution spectrum. These multiplicities were originated in the buffer mixture containing citric and tartaric acid, as well as their salts. Solid-state 13C NMR was therefore found to provide information that is lost in the solution spectrum due to the fast proton exchange between the organic acids and their conjugated salts.  相似文献   

19.
Using 26 NMR spectrometers, the Research Group on NMR, the Society of Polymer Science, Japan observed the 1H NMR chemical shift, resolution, and signal intensity; 13C NMR chemical shift, resolution, and signal intensity; the effect from initiator fragment signal; 1H spin-lattice relaxation times; 13C spin-lattice relaxation times; and 13C nuclear Overhauser enhancement of radically polymerized poly(methyl methacrylate). Excellent reliability was found after comparison between the data from different spectrometers. Molecular motion of this polymer was analyzed with a term of 3τ model.  相似文献   

20.
Summary The positions of the signals from the C3, C5, C6, and C7 carbon atoms in the13C NMR spectrum of coumarin have been established with the aid of information obtained from the13C NMR spectra of [3-D]-, [4-D]-, and 7-methoxycoumarins and by the use of an additive calculation based on the increments of the methoxy group in the13C NMR spectrum of anisole.M. V. Lomonosov Moscow State University Scientific-Research Institute of Pharmacology, Academy of Medical Sciences of the USSR. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 458–462, July–August, 1975.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号