共查询到20条相似文献,搜索用时 12 毫秒
1.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012 相似文献
2.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | s∈S}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | g∈G, s∈S}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010 相似文献
3.
Jin‐Xin Zhou 《Journal of Graph Theory》2012,71(4):402-415
A graph is vertex‐transitive if its automorphism group acts transitively on vertices of the graph. A vertex‐transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex‐transitive non‐Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p≡1 (mod 8) and the other two families exist if and only if p≡1 (mod 4). For each family there is a unique graph for a given order. © 2011 Wiley Periodicals, Inc. 相似文献
4.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory 相似文献
5.
Dragan Marui
《Journal of Graph Theory》2000,35(2):152-160
An infinite family of cubic edge‐transitive but not vertex‐transitive graphs with edge stabilizer isomorphic to ℤ2 is constructed. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 152–160, 2000 相似文献
6.
Let BCd,k be the largest possible number of vertices in a bipartite Cayley graph of degree d and diameter k. We show that BCd,k≥2(k−1)((d−4)/3)k−1 for any d≥6 and any even k≥4, and BCd,k≥(k−1)((d−2)/3)k−1 for d≥6 and k≥7 such that k≡3 (mod 4). 相似文献
7.
Eyal Loz Martin Mačaj Mirka Miller Jana Šiagiová Jozef Širáň Jana Tomanová 《Journal of Graph Theory》2011,68(4):265-284
We examine the existing constructions of the smallest known vertex‐transitive graphs of a given degree and girth 6. It turns out that most of these graphs can be described in terms of regular lifts of suitable quotient graphs. A further outcome of our analysis is a precise identification of which of these graphs are Cayley. We also investigate higher level of transitivity of the smallest known vertex‐transitive graphs of a given degree and girth 6 and relate their constructions to near‐difference sets. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:265‐284, 2011 相似文献
8.
Let G be a connected, nonbipartite vertex‐transitive graph. We prove that if the only independent sets of maximal cardinality in the tensor product G × G are the preimages of the independent sets of maximal cardinality in G under projections, then the same holds for all finite tensor powers of G, thus providing an affirmative answer to a question raised by Larose and Tardif (J Graph Theory 40(3) (2002), 162–171). © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 295‐301, 2009 相似文献
9.
A d‐regular graph is said to be superconnected if any disconnecting subset with cardinality at most d is formed by the neighbors of some vertex. A superconnected graph that remains connected after the failure of a vertex and its neighbors will be called vosperian. Let Γ be a vertex‐transitive graph of degree d with order at least d+4. We give necessary and sufficient conditions for the vosperianity of Γ. Moreover, assuming that distinct vertices have distinct neighbors, we show that Γ is vosperian if and only if it is superconnected. Let G be a group and let S?G\{1} with S=S?1. We show that the Cayley graph, Cay(G, S), defined on G by S is vosperian if and only if G\(S∪{1}) is not a progression and for every non‐trivial subgroup H and every a∈G, If moreover S is aperiodic, then Cay(G, S) is vosperian if and only if it is superconnected. © 2011 Wiley Periodicals, Inc. J Graph Theory 67:124‐138, 2011 相似文献
10.
Given natural numbers n?3 and 1?a, r?n?1, the rose window graph Rn(a, r) is a quartic graph with vertex set $\{{{x}}_{{i}}|{{i}}\in {\mathbb{Z}}_{{n}}\} \cup \{{{y}}_{{i}}|{{i}}\in{\mathbb{Z}}_{{n}}\}Given natural numbers n?3 and 1?a, r?n?1, the rose window graph Rn(a, r) is a quartic graph with vertex set $\{{{x}}_{{i}}|{{i}}\in {\mathbb{Z}}_{{n}}\} \cup \{{{y}}_{{i}}|{{i}}\in{\mathbb{Z}}_{{n}}\}$ and edge set $\{\{{{x}}_{{i}},{{x}}_{{{i+1}}}\} \mid {{i}}\in {\mathbb{Z}}_n \} \cup \{\{{{y}}_{{{i}}},{{y}}_{{{i+r}}}\}\mid {{i}} \in{\mathbb{Z}}_{{n}}\}\cup \{\{{{x}}_{{{i}}},{{y}}_{{{i}}}\} \mid {{i}}\in {\mathbb{Z}}_{{{n}}}\}\cup \{\{{{x}}_{{{i+a}}},{{y}}_{{{i}}}\} \mid{{i}} \in {\mathbb{Z}}_{{{n}}}\}$. In this article a complete classification of edge‐transitive rose window graphs is given, thus solving one of the three open problems about these graphs posed by Steve Wilson in 2001. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 216–231, 2010 相似文献
11.
Let n be an integer and q be a prime power. Then for any 3 ≤ n ≤ q?1, or n=2 and q odd, we construct a connected q‐regular edge‐but not vertex‐transitive graph of order 2qn+1. This graph is defined via a system of equations over the finite field of q elements. For n=2 and q=3, our graph is isomorphic to the Gray graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 249–258, 2002 相似文献
12.
13.
Steve Wilson 《Journal of Graph Theory》2004,45(1):1-27
In this paper, we first consider graphs allowing symmetry groups which act transitively on edges but not on darts (directed edges). We see that there are two ways in which this can happen and we introduce the terms bi‐transitive and semi‐transitive to describe them. We examine the elementary implications of each condition and consider families of examples; primary among these are the semi‐transitive spider‐graphs PS(k,N;r) and MPS(k,N;r). We show how a product operation can be used to produce larger graphs of each type from smaller ones. We introduce the alternet of a directed graph. This links the two conditions, for each alternet of a semi‐transitive graph (if it has more than one) is a bi‐transitive graph. We show how the alternets can be used to understand the structure of a semi‐transitive graph, and that the action of the group on the set of alternets can be an interesting structure in its own right. We use alternets to define the attachment number of the graph, and the important special cases of tightly attached and loosely attached graphs. In the case of tightly attached graphs, we show an addressing scheme to describe the graph with coordinates. Finally, we use the addressing scheme to complete the classification of tightly attached semi‐transitive graphs of degree 4 begun by Marus?ic? and Praeger. This classification shows that nearly all such graphs are spider‐graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 1–27, 2004 相似文献
14.
For every d and k, we determine the smallest order of a vertex‐transitive graph of degree d and diameter k, and in each such case we show that this order is achieved by a Cayley graph. 相似文献
15.
Zhao Zhang 《Discrete Mathematics》2009,309(4):899-521
A graph G is said to be semi-hyper-connected if the removal of every minimum cut of G creates exactly two connected components. In this paper, we characterize semi-hyper-connected vertex transitive graphs, in particular Cayley graphs. 相似文献
16.
17.
For each infinite cardinal κ, we give examples of 2κ many non‐isomorphic vertex‐transitive graphs of order κ that are pairwise isomorphic to induced subgraphs of each other. We consider examples of graphs with these properties that are also universal, in the sense that they embed all graphs with smaller orders as induced subgraphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 99–106, 2003 相似文献
18.
It is now known that many properties of the objects in certain combinatorial structures are equivalent, in the sense that any object possessing any of the properties must of necessity possess them all. These properties, termed quasirandom, have been described for a variety of structures such as graphs, hypergraphs, tournaments, Boolean functions, and subsets of Z n, and most recently, sparse graphs. In this article, we extend these ideas to the more complex case of graphs which have a given degree sequence. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008 相似文献
19.