首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A simple, reliable, and fast multiresidue method has been developed for the determination of 17 veterinary drugs belonging to several families (macrolides, sulfonamides, and anthelmintics) in cheese at trace levels. Ultra‐high‐performance LC coupled to MS/MS has been used for the analysis of these compounds in less than 9 min. Veterinary drug residues have been extracted from cheese samples using a QuEChERS (quick, easy, cheap, effective, rugged, and safe)‐based extraction procedure without applying any further clean‐up step. Matrix‐matched calibration was used for quantification and recoveries were calculated at three concentration levels (10, 50, and 100 μg/kg). The obtained values ranged from 70 to 110% for the selected compounds except for tylosin and josamycin at 100 μg/kg (111.7 and 112.7%, respectively). Intra‐ and interday precision were also evaluated and RSDs were lower than 25% in all the cases. LOQs ranged from 0.3 μg/kg (for thiabendazole, oxfendazole, mebendazole, josamycin, and fenbendazole) to 10.5 μg/kg (abamectin), whereas decision limit and detection capability ranged from 2.3 (thiabendazole) to 11.3 (abamectin) and 4.2 (thiabendazole) to 14.3 μg/kg (abamectin), respectively. Finally, 13 samples were analyzed and traces of thiabendazole were detected in two different cheeses.  相似文献   

2.
A sensible ultra‐performance LC–MS method was developed and validated for the quantification of clopidogrel active metabolite in human plasma, with clopidogrel D4 as internal standard. Plasma pretreatment involved a one‐step protein precipitation with acetonitrile. The separation was performed by reverse‐phase chromatography on a C8 column. The method was linear over the concentration range of 1–150 ng/mL. The intra‐ and inter‐day precision values were below 17% and accuracy was from 1.7 to 7.5% at all quality control levels. The lower LOQ was 0.8 ng/mL. Sample analysis time was reduced to 5 min including sample preparation (limited to protein precipitation). The present method was successfully applied to a clopidogrel active metabolite pharmacokinetic study following oral administration to healthy volunteers.  相似文献   

3.
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and sensitive method was developed and validated for the simultaneous determination of 103 pesticide residues in tea by LC‐MS/MS. For the analysis of the pesticide with polarity, thermal lability or low volatility, this LC‐MS/MS method has an advantage over GC. In this work, residual pesticides were extracted from the tea sample with ACN and then purified using Carb‐NH2 SPE cartridges. Using the multiple reaction monitoring mode, the pesticides were quantified and identified by the most abundant and characteristic fragment ions. The recoveries obtained for each pesticide ranged between 65 and 114% at three spiked concentration levels. The intra‐day precisions were lower than 19.6%. Good linear relationships were observed with the correlation coefficients r2 >0.996 for all analytes. The established method was successfully applied to the determination of pesticide residues in real tea samples.  相似文献   

5.
A quantitative analysis of polyamines in lung cancer patient fingernails by the combination of 4‐(N,N‐dimethylaminosulfonyl)‐7‐fluoro‐2,1,3‐benzoxadiazole derivatives and liquid chromatography–electrospray ionization tandem mass spectrometry is described. The reaction of the reagent with eight kinds of polyamines, that is, N1‐acetylputrescine (N1‐actPUT), N8‐acetylspermidine, N1‐acetylspermine, 1,3‐diaminopropane, putrescine (PUT), cadaverine, spermidine and spermine (SPM) effectively occurs at 60 °C for 30 min. The detection limits (signal‐to‐noise ratio 5) were 5–100 fmol. A good linearity was achieved from the calibration curves, which was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), that is, 1,6‐diaminohexane, vs the injected amounts of polyamines (r2 > 0.996), and the intra‐day and inter‐day assay precisions were <9.84%. Furthermore, the recoveries (%) of the polyamines spiked in the human fingernails were 89.14–110.64. The present method was applied to human fingernail samples from 17 lung cancer patients and 39 healthy volunteers. The polyamine concentration was different based on the gender, that is, the N1‐actPUT and PUT contents were 3.10 times and 2.56 times higher in healthy men than in women, respectively. Additionally, in the lung cancer patient group, as compared with the healthy volunteers, the concentrations of SPM had a statistically significant (p < 0.05) correlation. Therefore, because the proposed method provides a good mass accuracy and the trace detection of the polyamines in human fingernails, this analytical technique could be a noninvasive technique to assist in the diagnosis and assessment of disease activity in lung cancer patients. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A robust, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lacidipine (LAC) with 100 μL of human plasma using lacidipine‐13C8 as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode. A simple liquid–liquid extraction process was used to extract LAC and IS from human plasma. The total run time was 3.0 min and the elution of LAC and IS occurred at 1.96 and 1.97 min; this was achieved with a mobile phase consisting of 5 mm ammonium acetate buffer–acetontrile (15:85 v/v) at a flow rate of 0.60 mL/min on a Zorbax SB C18 (50 × 4.6 mm, 5 µm) column. A linear response function was established for the range of concentrations 50–15,000 pg/mL (r > 0.998) for LAC. The current developed method has negligible matrix effect and is free from unwanted adducts and clusters which are formed owing to system such as solvent or mobile phase. The developed assay method was applied to an oral pharmacokinetic study in humans and successfully characterized the pharmacokinetic data up to 72 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Oroxylum indicum, as a popular functional Chinese herbal medicine for reducing hyperactivity, relieving sore throat, smoothing the liver and adjusting stomach, mainly contains flavonoids. In this study, we aimed to establish a fast and sensitive method that enables to analyze the chemical components in O. indicum qualitatively and quantitatively. First, a total of 42 components were characterized by LC‐quadrupole time‐of‐flight (qTOF)‐tandem mass spectrometry (MS/MS), including 23 flavonoid glycosides, 13 flavonoids and six other types of compounds. Then, 17 characteristic components of the 19 common peaks in the chromatographic fingerprints of O. indicum were confirmed. Fifty samples were classified into two groups by hierarchical clustering analysis and orthogonal partial least squares‐discriminant analysis, which also identified the 10 main chemical markers responsible for differences between samples. Last, the quantitative analysis of multiple components with a single marker method was established for simultaneous determination of six main active components in O. indicum by LC‐UV with oroxin B was chosen as internal reference substance. Finally, a rapid and efficient method integrating HPLC with LC‐electrospray ionization‐qTOF‐MS/MS analysis was established to comprehensively discriminate and assess the quality of O. indicum samples.  相似文献   

9.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this work is to establish a method for the simultaneous determination of eight penicillins in milk samples by LC‐UV, LC‐MS and LC‐MS/MS. The procedure involves a step for clean‐up and to preconcentrate the analytes by SPE and a subsequent chromatographic analysis. LC‐UV, LC‐MS and LC‐MS/MS have been used for the simultaneous quantification of penicillins in milk. The proposed methods have been validated according to the EU guideline and present LOQ below the maximum limits of residues (MRLs) established by the European Union for penicillins in milk. The developed methods were applied to different milk samples obtained from cows medicated with penicillins.  相似文献   

13.
A sensitive, selective and robust liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the rapid determination of linarin in rat plasma. Separation of the analyte and warfarin as internal standard (IS) from 100 μL rat plasma was carried out by simple protein precipitation treatment. Chromatographic separation of the analyte was performed on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of methanol–0.5% formic acid (80:20, v/v). The flow rate was 0.6 mL/min and the total run time was not more than 4.0 min. The method was validated over a wide dynamic concentration range of 1.00–1000 ng/mL for linarin. The precision and accuracy values for linarin met the acceptance criteria according to US Food and Drug Administration guidelines. Linarin was stable in the stability studies including a long‐term test (?80°C for 43 days), a short‐term test (ambient for 2 h and autosampler for 8 h) and three freeze–thaw cycles (?80–25°C). The developed assay method was applied to the pharmacokinetic study in rats after a single intramuscular administration of 713 µg/kg linarin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

15.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Xiao‐Ai‐Ping injection (XAPI) is a traditional Chinese medicine that has been widely used to treat cancer. Modern pharmacological studies have demonstrated that C21 steroids are the main active compounds in XAPI. In this study, a sensitive and specific liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated the first time for simultanenous determination of three isomeric pregnane genins (17β‐tenacigenin B, tenacigenin B and tenacigenin A) and their corresponding glycosides (tenacigenoside A, tenacissoside F and marsdenoside I) from XAPI in rat plasma. A simple liquid–liquid extraction technique was used after the addition of dexamethasone acetate as internal standard. The chromatography separation of analytes was achieved on an Agilent Zorbax Eclipse XDB‐C18 column (3.5 µm, 150 × 3 mm i.d.) using methanol–water as mobile phase in a gradient elution program. Detection was performed in multiple reaction monitoring mode using electrospray ionization in the negative ion mode. The method showed satisfactory linearity over a concentration range 5.00–2000.00 ng/mL for tenacigenin B, tenacigenin A, marsdenoside I and tenacissoside F (r2 > 0.99), 10.00–4000.00 ng/mL for 17β‐tenacigenin B and tenacigenoside A (r2 > 0.99). Intra‐ and inter‐day precisions (valued as relative standard deviation) were <9.00% and accuracies (as relative error) in the range ?6.31 to 7.23%. Finally, this validated method was successfully applied to the pharmacokinetic study of XAPI after intravenous administration to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A specific and automated method was developed to quantify the anticonvulsants gabapentin, pregabalin and vigabatrin simultaneously in human serum. Samples were prepared with a protein precipitation. The hydrophilic interaction chromatography (HILIC) with a mobile phase gradient was used to divide off ions of the matrix and for separation of the analytes. Four different HILIC‐columns and two different column temperatures were tested. The Tosoh‐Amid column gave the best results: single small peaks. The anticonvulsants were detected in the multiple reaction monitoring mode (MRM) with ESI‐MS‐MS. Using a volume of 100 μL biological sample the lowest point of the standard curve, i.e. the lower LOQs were 312 ng/mL. The described HILIC‐MS‐MS method is suitable for therapeutic drug monitoring and for clinical and pharmcokinetical investigations of the anticonvulsives.  相似文献   

18.
A sensitive high‐performance liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) assay has been developed for the quantitative analysis of vardenafil in human plasma. Vardenafil and the internal standard, alprazolam, were extracted from 0.2 mL aliquots of alkalinized plasma by a single solvent extraction into hexane : dichloromethane. Reversed‐phase chromatographic separation was affected by gradient elution with mobile phases consisting of 10 mM ammonium formate pH 7.0 (solvent A) and methanol (100%, solvent B), delivered at a flow rate of 0.4 mL/min. The analytes were detected by using an electrospray ion source on a 4000 QTrap triple quadrupole mass spectrometer operating in positive ionization mode. The mass transitions were m/z 489.3 → 312.2 for vardenafil and m/z 309.2 → 281.0 for alprazolam. The assay was linear over the concentration range of 0.2–100 ng/mL, with correlation coefficients ≥0.995. The intra‐ and inter‐day precision was less than 5.4% in terms of relative standard deviation and the accuracy was within 12.7% in terms of relative error. The lower limit of quantitation was set at 0.2 ng/mL. The high sensitivity and acceptable performance of the assay allowed its application to the analysis of plasma samples obtained following the oral administration of vardenafil to healthy male volunteers in a pharmacokinetic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A novel, rapid and sensitive LC‐MS/MS method for the determination of 1‐O‐Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol–5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60–800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half‐lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration–time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Polyphyllin I (PPI), a natural steroidal saponin originating from rihzome of Paris polyphylla , is a potential anticancer candidate. Previous pharmacokinetics study showed that the oral bioavailability of PPI was very low, which suggested that certain amount of PPI might be metabolized in vivo . However, to date, information regarding the final metabolic fates of PPI is very limited. In this study, metabolites of PPI and their pharmacokinetics in rats were investigated using UPLC‐QTOF‐MS/MS and LC‐TQ‐MS/MS. A total of seven putative metabolites, including six phase I and one phase II metabolites, were detected and identified with three exact structures by comparison with authentic standards for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. The pharmacokinetics of prosapogenin A, trillin and diosgenin, three deglycosylation metabolites of PPI with definite anticancer effects, were further studied, which suggested that the metabolites underwent a prolonged absorption and slower elimination after intragastric administration of PPI at the dose of 500 mg/kg. This study provides valuable and new information on the metabolic fate of PPI, which will be helpful in further understanding its mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号