首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate constant of malachite green (MG+) alkaline fading was measured in water–ethanol–2‐propanol ternary mixtures. This reaction was studied under pseudo‐first‐order conditions at 283–303 K. It was observed that the observed reaction rate constants, kobs, were increased in the presence of different weight percentages of ethanol and 2‐propanol. The fundamental rate constants of MG+ fading in these solutions were obtained by using the SESMORTAC model. In each series of experiments, the concentration of one alcohol was kept constant and the concentration of the second one was changed. It was observed that at the constant concentration of one alcohol and variable concentrations of the second one, with an increase in temperature, k2 values decrease according to the trend of hydroxide ion nucleophilic parameter values and k1 values increase. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 441–453, 2011  相似文献   

2.
The rate constant of malachite green (MG+) alkaline fading was measured in water‐ethanol‐1‐propanol ternary mixtures. This reaction was studied under pseudo‐first‐order conditions at 283‐303 K. It was observed that the reaction rate constant increases in the presence of different weight percentages of ethanol and 1‐propanol. The fundamental rate constants of MG+ fading in these solutions were obtained by SESMORTAC model. In each series of experiments, concentration of one alcohol was kept constant and the concentration of the second one was changed. It was observed that at constant concentration of one alcohol and variable concentrations of the second one, with increase in temperature, k1 values increase and this indicates that presence of ethanol (or 1‐propanol) increases dissolution of 1‐propanol (or ethanol) in the activated complex formed in these solutions. Also, in each zone, fundamental rate constants of reaction at each certain temperature change as k2 » k1 » k?1.  相似文献   

3.
The rate constants of alkaline fading of a number of triphenylmethane (TPM) dyes including methyl green (ME2+), brilliant green (BG+), fuchsin acid (FA2?), and bromophenol blue (BPB2?) were obtained in aqueous binary mixtures of 2‐propanol (protic solvent) and dimethyl sulfoxide (DMSO) (aprotic solvent) at different temperatures. It was observed that the reaction rate constants of BG+ and ME2+ increased and those of FA2? and BPB2? decreased with an increase in weight percentages of aqueous 2‐propanol and DMSO binary mixtures. 2‐Propanol and DMSO interact with the used TPM molecules through hydrogen bonding and ion–dipole interaction, respectively, in addition to their hydrophobic interaction with TPM dyes. The fundamental rate constants of a fading reaction in these solutions were obtained by the SESMORTAC model. Also, the effect of electric charge and substituent groups of a number of TPM dyes on their alkaline fading rate was studied.  相似文献   

4.
The rate constant of malachite green (MG+) alkaline fading was measured in water–ethanol–ethylene glycol ternary mixtures. This reaction was studied under pseudo-first-order conditions at 283–303 K. In each series of experiments, the concentration of ethanol was kept constant and the concentration of ethylene glycol was changed. It was shown that due to hydrogen bonding and hydrophobic interaction between MG+ and alcohol molecules the observed reaction rate constant, $ k_{\text{obs}} $ , increased in the water–ethanol–ethylene glycol ternary mixtures. The fundamental rate constants of MG+ fading in these solutions ( $ k_{1} $ , $ k_{ - 1} $ and $ k_{2} $ ) were obtained by the SESMORTAC model. Analysis of $ k_{1} $ and $ k_{2} $ values in solutions containing constant ethanol concentrations show that in low concentrations of ethylene glycol, hydrogen bonding formed between ethanol and ethylene glycol molecules and in high concentrations of ethylene glycol, ethanol as a solvent for ethylene glycol affected the reaction rate.  相似文献   

5.
Kinetics of aquation of some Fe(II) Schiff base amino acid complexes was followed spectrophotometrically. The Schiff base ligands were derived from salicylaldehyde and isoleucine, leucine, serine, methionine, tryptophan, or histidine. The reaction was studied in aqueous media, aqua–propanol mixtures, and in the presence of different concentrations of KBr. Moreover, the activation parameters were calculated and discussed for structures and other physical properties observed. The reaction was acid catalyzed and the general rate equation was suggested as follows: rate = kobs [complex], where kobs = k2 [H+]. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 372–379, 2010  相似文献   

6.
The catalytic effect of europium(III) on the reduction of thionine dye (Th) by selenous acid has been studied by spectrophotometry in aqueous sulfuric acid solutions at a constant ionic strength of 3.0 mol dm?3 and at different temperatures (283–313 K). A first‐order dependence with respect to both [Th] and [EuIII] was obtained, whereas the orders with respect to [SeIV] and [H+] were less than unity. Variation of ionic strength and dielectric constant of the reaction media did not affect the reaction rates. Probable mechanistic schemes for thionine reductions in both the absence and presence of europium(III) catalyst were proposed. The rate laws associated with the reaction mechanisms were derived, and the reaction constants were calculated. The activation parameters of the rate constants of the slow steps of both uncatalyzed and catalyzed reactions along with thermodynamic quantities of the equilibrium constants are computed and discussed.  相似文献   

7.
The kinetics of the oxidation of malachite green (MG+) by Fe(III) were investigated spectrophotometrically by monitoring the absorbance change at 618 nm in aqueous and micellar media at a temperature range 20–40 °C; I = 0.10 mol dm?3 for [H+] range (2.50–15.00) × 10?4 mol dm?3. The rate of reaction increases with increasing [H+]. The reaction was carried out under pseudo-first-order conditions by taking the [Fe(III)] (>10-fold) the [MG+]. A mechanism of the reaction between malachite green and Fe(III) is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law as follows: Rate = (k 4 + K 1 k 5[H+]) [MG+][Fe(III)]. The effect of surfactants, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecylsulfate (SDS, an anionic surfactant), on the reaction rate has been studied. CTAB has no effect on the rate of reaction while SDS inhibits it. Also, the effect of ligands on the reaction rate has been investigated. It is proposed that electron transfer proceeds through an outer-sphere mechanism. The enthalpy and the entropy of the activation were calculated using the transition state theory equation.  相似文献   

8.
The zwitterionic monomer, ethyl 3‐(N,N‐diallylammonio)propanephosphonate, was cyclopolymerized in aqueous solutions using t‐butylhydroperoxide or ammonium persulfate as initiators to afford a polyphosphonobetaine (PPB). The protonation of P(?O)OEtO and deprotonation of ? NH+ groups in PPB by HCl and NaOH, gave the corresponding cationic polyphosphononic acid (CPP) and anionic polyphosphonate (APP). The presence of two pH‐responsive functionalities in APP has led to establish the equilibria: APP ? PPB ? CPP, the position of which very much dictates the viscosity behavior of its aqueous solution. The PPB demonstrated “antipolyelectrolyte” viscosity behavior; however, in contrast to many polycarbo‐ and polysulfo‐betaines, it was found to be soluble in salt‐free water as well as in salt‐added solutions. Basicity constant (K1) of the amine group in APP, as determined by potentiometric technique, were found to be “apparent,” and as such followed the modified Henderson‐Hasselbalch equation. The study demonstrated a correlation between the basicity constants and viscosity values. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Second‐order rate constants and activation parameters of 1,3‐dipolar cycloaddition reaction between C,N‐diphenylnitrone and dimethyl fumarate were obtained in various solvents and aqueous solutions at 65°C. Second‐order rate constants of the reaction in water and ethylene glycol are approximately 33 and 8 times faster than those expected from solvent polarity, respectively. Increase of the reaction rate in aqueous solutions of ethanol is higher than that of propan‐1‐ol. A multiparameter correlation of log k2 vs Sp and ETN in various solvents and aqueous solutions of ethanol shows that solvophobicity and solvent polarity parameter are important factors in occurrence of the reaction. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 431–434, 2000  相似文献   

10.
Measurements of advancing contact angles (θ) were carried out for aqueous solutions of cetylpyridinium bromide (CPBr) and propanol mixtures at constant CPBr concentration equal to 1 × 10−5, 1 × 10−4, 6 × 10−4, 1 × 10−3 M, respectively, on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE by aqueous solutions of these mixtures depends on their composition and concentration. In contrast to Zisman, there is no linear dependence between the cos θ and surface tension of aqueous solutions of CPBr and propanol mixtures (γLV), but a linear relationship exists between the adhesion tension and the surface tension of aqueous solutions of CPBr and propanol mixtures which have a slope equal to −1, and between cos θ and the reciprocal of the surface tension of solution. The slope equal to −1 and the intercept on the cos θ axis close to −1 suggest that adsorption of CPBr and propanol mixtures and the orientation of their molecules at aqueous solution–air and PTFE–aqueous solution interfaces are the same. This also suggests that the work of solution adhesion to the PTFE surface does not depend on the concentration of propanol and CPBr. Extrapolation of the straight line to the point corresponding to the surface tension of solution, which completely spreads over the PTFE surface, gives the value of the critical surface tension of PTFE wetting equal to 24.84 mN/m. This value is higher than PTFE surface tension (20.24 mN/m) and the values of the critical surface tension of PTFE wetting determined by other investigators from the contact angle of nonpolar liquids (e.g. n-alkanes). The differences between the value of the critical surface tension obtained here and those which can be found in the literature were discussed on the basis of the simple thermodynamic rules. Using the measured values of the contact angles and Young equation the PTFE–aqueous solution interfacial tension was determined. The values of PTFE–aqueous solution interfacial tension were also calculated from Miller and co-workers equation in which the correction coefficient of nonideality of the surface monolayer was introduced. From comparison of the obtained values it appears that good agreement exists between the values of PTFE–solution interfacial tension calculated on the basis of Young and Miller and co-workers equations in the whole range of propanol concentration.  相似文献   

11.
Complexes equilibrium of (BHPAP) with proton and Sm+3 ion has been measured in various mixed aqueous solvents, viz.; methanol‐water, ethanol‐water, acetone‐water and dioxane‐water. Based on potentiometric equilibrium measurements of hydrogen ion concentration at 30 °C, ionic strength 0.1 M KNO3 and in the above various mixed solvents, the values of protonation constant of BHPAP‐Sm+3 complex have been evaluated. The variation of protonation and stability constants with the inverse of dielectric constant or mole fraction of solvent was studied. Application of Fuoss expression and consideration of electrostatic and non‐electrostatic effects are made to explain the above constants. The solid complexes were isolated for each Pr+3 and Nd+3‐BHPAP. Elemental analysis, conductance, infrared spectra, and electronic spectra for these solutions and TG, DTG and DTA measurements characterized these solids. The ligand behaves towards the metal ion as a dibasic tetradentate ligand.  相似文献   

12.
The kinetics of oxidation of 1‐methoxy‐2‐propanol and 1‐ethoxy‐2‐propanol by ditelluratocuprate(III) (DTC) in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2–313.2 K. The reaction rate showed first order dependence in DTC and fractional order with respect to 1‐methoxy‐2‐propanol or 1‐ethoxy‐2‐propanol. It was found that the pseudo‐first order rate constant kobs increased with an increase in concentration of OH? and a decrease in concentration of TeO42?. There is a negative salt effect. A plausible mechanism involving a pre‐equilibrium of a adduct formation between the complex and 1‐methoxy‐2‐propanol or 1‐ethoxy‐2‐propanol was proposed. The rate equations derived from mechanism can explain all experimental observations. The activation parameters along with the rate constants of the rate‐determining step were calculated.  相似文献   

13.
We review and discuss kinetic studies of the disproportionation reaction of iodous acid (HIO2) in the presence of excess of Hg2+‐ions. The reactions are followed at different temperatures in water solution with strongly defined acidity. The rate constants of disproportionation are determined between 285 and 303 K based on kinetic data obtained under steady‐state conditions. The calculated rate constants increase with increasing temperature and acid concentration. The corresponding values of activation energy as well as enthalpy and entropy of activation for this reaction have been calculated. The enthalpy of activation as well as entropy is higher at higher sulfuric acid concentration. Also, it was considered that the values of Gibbs energy of formation of HgI+ are generated during the process. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 687–691, 2010  相似文献   

14.
The oxidation of inositol by quinquevalent vandadium in acid medium is a first-order reaction both in vanadium (V) and inositol. The stoichiometry of the reaction is consistent with the use of two equivalents of vanadium (V) per mole of inositol with the formation of one mole of inosose. The reaction is catalyzed both by sulfuric and perchloric acid, but the rate is faster in sulfuric acid than in perchloric acid. In 1M–6M perchloric acid solutions the reaction has shown a variable order in H+, but in solutions of 2M–5M sulfuric and perchloric acid of constant ionic strength, the rate has a linear dependence on [H+]2. There is also a linear correlation between the rate and bisulfate ions in sulfuric acid at constant hydrogen ion concentration. The energy of activation is found to be 19 kcal/mole and a negative entropy value of ? 14 e.u. A suitable mechanism, consistent with the kinetics in 2M–5M acid solutions, is suggested and the values of various rate constants are evaluated.  相似文献   

15.
Quasi‐oscillations in [O2] were observed during the methylene blue catalyzed oxidation of D‐glucose by O2 in alkaline aqueous solutions. The kinetics of anaerobic oxidation of D‐glucose (GH) by methylene blue (MB+) was investigated in a closed system. The reaction was first order with respect to the concentration of methylene blue and the observed rate constant increased with GH concentration in a saturated mode. The oxidation proceeds via complex formation between GH and MB+ and the rate constant of the decay of the complex was determined. The oxidation process was also investigated under aerobic conditions and the reaction rates and reaction orders were determined by spectrophotometric measurements of the disappearance of MB+ and by amperometric determination of O2 consumption. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 463–468, 1999  相似文献   

16.
By using spectrophotometric and potentiometric techniques the formation constants of the species formed in the systems H^++ Mo(Ⅵ)+nitrilotriacetic acid and H^+ + nitrilotriacetic acid have been determined in aqueous solutions of propanol at 25 ℃ and constant ionic strength 0.1 molodm^-3 sodium perchlorate. The composition of the complex was determined by the continuous variation method. It was shown that molybdenum(Ⅵ) forms a mononuclear 1 : 1 complex with nitrilotriacetic acid of the type MoO3L^-3 at -lg[H^+] =5.8. The formation constants in various media were analyzed in terms of Kamlet and Taft's parameters. Linear relationships were observed when lg Ks was plotted versusp. Finally, the results were discussed in terms of the effect of solvent on complexation.  相似文献   

17.
The role of C? C bond‐forming reactions such as aldol condensation in the degradation of organic matter in natural environments is receiving a renewed interest because naturally occurring ions, ammonium ions, NH+4, and carbonate ions, CO32?, have recently been reported to catalyze these reactions. While the catalysis of aldol condensation by OH? has been widely studied, the catalytic properties of carbonate ions, CO32?, have been little studied, especially under environmental conditions. This work presents a study of the catalysis of the aldol condensation of acetaldehyde in aqueous solutions of sodium carbonate (0.1–50 mM) at T = 295 ± 2 K. By monitoring the absorbance of the main product, crotonaldehyde, instead of that of acetaldehyde, interferences from other reaction products and from side reactions, in particular a known Cannizzaro reaction, were avoided. The rate constant was found to be first order in acetaldehyde in the presence of both CO32? and OH?, suggesting that previous studies reporting a second order for this base‐catalyzed reaction were flawed. Comparisons between the rate constants in carbonate solutions and in sodium hydroxide solutions ([NaOH] = 0.3–50 mM) showed that, among the three bases present in carbonate solutions, CO32?, HCO3?, and OH?, OH? was the main catalyst for pH ≤ 11. CO32? became the main catalyst at higher pH, whereas the catalytic contribution of HCO3? was negligible over the range of conditions studied (pH 10.3–11.3). Carbonate‐catalyzed condensation reactions could contribute significantly to the degradation of organic matter in hyperalkaline natural environments (pH ≥ 11) and be at the origin of the macromolecular matter found in these environments. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 676–686, 2010  相似文献   

18.
Current researchers from environmental and industrial fields are focusing on advanced means of carbon dioxide (CO2) capture to limit its consequences in process industries. They also intend to enhance the mitigation of environmental impart by CO2 especially its greenhouse effect. In this study, the kinetics of CO2 reaction with an aqueous blend of piperazine (PZ) and 2‐amino‐2‐ethyl‐1,3‐propanediol (AEPD) were investigated. It was found that blending of AEPD with a little percentage of PZ generated the observed rate constant, ko, values that were more than twice the direct summation of the ko values of the aqueous pure amines at the corresponding concentration and temperature. The kinetic study of the system was modeled using a termolecular mechanism. Blending 0.05 kmol/m3 of PZ with 0.5 kmol/m3 of AEPD gives an observed rate constant ko value of 2397.9 s?1 at 298 K. This result is comparable to rate constants of other amine mixtures. Thus, the aqueous blend of AEPD with PZ is an attractive solvent for CO2 capture that has good advantages. The PZ that serves as the promoter in the reaction is needed in small fraction, whereas AEPD, which is a sterically hindered amine, increases CO2 absorption capacity of the system. AEPD can be produced from renewable materials. © 2013 Wiley Periodicals, Inc. Int J Chem Kinet 45: 161–167, 2013  相似文献   

19.
Pseudo‐first‐order rate constants (kobs) for pH‐independent hydrolysis of phthalimide ( 1 ), obtained at a constant total concentration of cetyltrimethylammonium bromide and hydroxide ([CTABr]T), 2.0 × 10?4 M 1 , 0.02 M MOH (M+ = Li+, Na+ and K+) and various concentrations of inert salt MX (= LiCl, LiBr, NaCl, NaBr, KCl and KBr), follow a relationship derived from the pseudophase micellar (PM) model coupled with an empirical equation. This relationship gives empirical constants, FX/S and KX /S, with S representing anionic 1 . The magnitude of FX/S is the measure of the fraction of micellized anionic 1 (S?M) transferred to the aqueous phase by the limiting concentration of X?. The value of KX/S is the measure of the ability of the counterions (X?) to expel the reactive counterions (S?) from the cationic micellar surface to the aqueous phase. The values of FX/ S are ~ 1 for MBr (M+ = Li+, Na+ and K+) and in the range ? 0.7 to ? 0.5 for MCl (M+ = Na+ and K+) at 0.006, 0.010 and 0.016 M CTABr. For LiCl, the values of FX/S become ~1 at 0.006 and 0.010 M CTABr and 0.8 at 0.016 M CTABr. The values of the empirical constants, FX/S and KX/S, have been used to determine the usual ion exchange constant (KClBr). The mean values of KClBr are 3.9 ± 0.5, 2.7 ± 0.1, and 2.6 ± 0.3 for LiX, NaX, and KX, respectively. These values of KClBr are comparable with those obtained directly by other physicochemical techniques. Thus, this new method for the determination of ion exchange constants for various counterions of cationic micelles may be considered as a reliable one. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 9–20, 2011  相似文献   

20.
The complex formation reaction of the $ {\text{VO}}_{2}^{ + } $ VO 2 + cation with D-(-)-quinic acid {(1R,3R,4S,5R)-(-)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid} at T = 298 K, I = 0.1 mol·dm?3 of sodium chloride in various aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim]BF4, and methanol were studied by using potentiometric and UV spectrophotometric techniques. As far as we know, the calculated stability constants data presented in the current work are the first reported values for [bmim]BF4 and methanol mixed solvents. The Kamlet–Abboud–Taft solvatochromic equation enabled us to interpret the UV data and the stability constants values. The Redlich–Kister equation was applied for the calculation of solvatochromic parameters in the binary water + [bmim]BF4 mixtures. Hydrogen bonding is important for the dissociation constant in both media. In these systems the solvent polarizability and hydrogen-bond donor ability are the main interactions for the stability constants in the aqueous ionic liquid and methanol solutions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号