首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dipyridamole is a classic platelet inhibitor which has been a key medicine in clinical therapy of thrombosis and cerebrovascular disease. A rapid, selective and convenient method using high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) was developed for determination of dipyridamole in human plasma. After protein precipitation of 200 μL plasma with methanol, dipyridamole and diazepam (internal standard) were chromatographed on an Ultimate? XB‐C18 (50 × 2.1 mm i.d, 3 μ) column with the mobile phase consisting of methanol–ammonium acetate (5 mM ; 80 : 20, v/v) at a flow rate of 0.25 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization source (ESI+). The retention times of dipyridamole and diazepam were 1.4 and 1.2 min, respectively. The method was validated over a concentration range of 0.0180–4.50 μg/mL (r2 ≥ 0.99) with a lower limit of quantitation (LLOQ) of 0.0180 μg/mL for dipyridamole. The intra‐ and inter‐day precisions (RSD) of the assay at all three QC levels were 1.6–12.7% with an accuracy (RE) of ?4.3–1.9%, which meets the requirements of the FDA guidance. The HPLC‐MS/MS method herein described was proved to be suitable for pharmacokinetic study of sustained‐release dipyridamole tablet in volunteers after oral administration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive and specific high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC‐ESI‐MS/MS) method was developed and validated for determination of rupestonic acid in rat plasma. Protein precipitation method was used to extract rupestonic acid and the internal standard (IS) warfarin sodium from rats plasma. The chromatographic separation was performed on an Agela Venusil XBP Phenyl column with an isocratic mobile phase consisting of methanol–0.1% formic acid in water (40:60, v/v), pumped at 0.4 mL/min. Rupestonic acid and the internal standard (IS) warfarin sodium were detected at m/z 247.2 → 203.1 and 307.1 → 161.3 in positive ion and multiple reaction monitoring mode respectively. The standard curves were linear over the concentration range of 2.5–5000 ng/mL (r2 > 0.99). The within‐day and between‐day precision values for rupestonic acid at four concentrations were 4.7–5.7 and 4.4–8.7%, respectively. The method described herein was fully validated and successfully applied to the pharmacokinetic study after an intravenous administration of rupestonic acid in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A speedy and selective ultra‐HPLC‐MS/MS method for simultaneous determination of deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐ADON), 15‐ADON, nivalenol and fusarenon X in traditional Chinese medicines (TCMs) was developed. The method was based on one‐step sample cleanup using reliable homemade cleanup cartridges. A linear gradient mobile‐phase system, consisting of water containing 0.2% aqueous ammonia and acetonitrile/methanol (90:10, v/v) at a flow rate of 0.4 mL/min, and an Acquity UPLC HSS T3 column (100 mm×2.1 mm, 1.8 μm) were employed to obtain the best resolution of the target analytes. [13C15]–DON was used as the internal standard to accomplish as accurate as possible quantitation. The established method was further validated by determining the linearity (R2≥0.9990), sensitivity (LOQ, 0.29–0.99 μg/kg), recovery (88.5–119.5%) and precision (RSD≤15.8%). It was shown to be a suitable method for simultaneous determination of DON, 3‐ADON, 15‐ADON, nivalenol and fusarenon X in various TCM matrices. The utility and practical impact of the method was demonstrated using different TCM samples.  相似文献   

5.
Anacetrapib is a potent and selective CETP inhibitor and is undergoing phase III clinical trials for the treatment of dyslipidemia. A simple and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the quantification of anacetrapib in rat plasma was developed and validated using an easily purchasable compound, chlorpropamide, as an internal standard (IS). A minimal volume of rat plasma sample (20 μL) was prepared by a single‐step deproteinization procedure with 80 μL of acetonitrile. Chromatographic separation was performed using Kinetex C18 column with a gradient mobile phase consisting of water and acetonitrile containing 0.1% formic acid at a flow rate of 0.3 mL/min. Mass spectrometric detection was performed using selected reaction monitoring modes at the mass/charge transitions m/z 638 → 283 for anacetrapib and m/z 277 → 175 for IS. The assay was validated to demonstrate the selectivity, linearity, precision, accuracy, recovery, matrix effect and stability. The lower limit of quantification was 5 ng/mL. This LC‐MS/MS assay was successfully applied in the rat plasma protein binding and pharmacokinetic studies of anacetrapib. The fraction of unbound anacetrapib was determined to be low (ranging from 5.66 to 12.3%), and the absolute oral bioavailability of anacetrapib was 32.7%.  相似文献   

6.
A simple, fast and low‐cost extraction method with high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) determination was developed on sulfonamide antibiotics (SAs) in fish tissue. Magnetic separation was first introduced into the rapid sample preparation procedure combined with acetonitrile extraction for the analysis of SAs. Partitioning was rapidly achieved between acetonitrile solution and solid matrix by applying an external magnetic field. Acetonitrile solution was collected and concentrated under a nitrogen stream. The residue was redissolved with 1‰ formic acid aqueous solution and defatted with n‐hexane before analysis. The recoveries of SAs were in the range of 74.87–104.74%, with relative standard deviations <13%. The limits of quantification and the limits of detection for SAs ranged from 5.0 to 25.0 μg kg?1 and from 2.5 to 10.0 μg kg?1, respectively. The presented extraction method proved to be a rapid method which only took 20 min for one sample preparation procedure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid–liquid extraction with tetra‐butyl methyl ether. Chromatographic separation was performed on Luna C18 column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280–300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Nephropathic cystinosis is characterized by abnormal intralysosomal accumulation of cystine throughout the body, causing irreversible damage to various organs, particularly the kidneys. Cysteamine, the currently available treatment, can reduce lysosomal cystine and postpone disease progression. However, cysteamine poses serious side effects and does not address all of the symptoms of cystinosis. To screen for new treatment options, a rapid and reliable high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed to quantify cystine in conditionally immortalized human proximal tubular epithelial cells (ciPTEC). The ciPTEC were treated with N‐ethylmaleimide, lysed and deproteinized with 15% (w/v) sulfosalicylic acid. Subsequently, cystine was measured using deuterium‐labeled cystine‐D4, as the internal standard. The assay developed demonstrated linearity to at least 20 μmol/L with a good precision. Accuracies were between 97.3 and 102.9% for both cell extracts and whole cell samples. Cystine was sufficiently stable under all relevant analytical conditions. The assay was successfully applied to determine cystine levels in both healthy and cystinotic ciPTEC. Control cells showed clearly distinguishable cystine levels compared with cystinotic cells treated with or without cysteamine. The method developed provides a fast and reliable quantification of cystine, and is applicable to screen for potential drugs that could reverse cystinotic symptoms in human kidney cells.  相似文献   

10.
In this study the qualitative and quantitative content of the biophenolics in virgin olive oils is evaluated by liquid chromatography‐tandem mass spectrometry. The extraction and purification method for these compounds from virgin oils was optimised. After liquid‐liquid and solid‐phase extraction the separation of 35 of these compounds was achieved on reversed phase in gradient mode. The detection was preliminarily by UV and fluorescence, but then the final choice was ion‐spray tandem mass spectrometry in multiple reaction monitoring mode in negative ionization, acquiring two diagnostic product ions from the chosen precursor [M—H]. Using this last approach we obtained the best sensitivity, selectivity, and specificity. The recovery of the method ranged from 70–90% and detection limits were less than 1 ng for all the analyzed compounds.  相似文献   

11.
An HPLC separation method with triethylammonium acetate mobile phase additive developed for the analysis of impurities in polysulphonated azo dyes provides good separation selectivity and compatibility with electrospray ionisation (ESI) mass spectrometry. The negative‐ion ESI mass spectra containing only peaks of deprotonated molecules [M–H] for monosulphonic acids, [M–xH]x, and sodiated adducts [M–(x + y)H + yNa]x for polysulphonic acids allow easy molecular mass determination of unknown impurities. Based on the knowledge of the molecular masses and of the fragment ions in the MS/MS spectra, probable structures of trace impurities in commercial dye samples are proposed. To assist in the interpretation of the mass spectra of complex polysulphonated azodyes, additional information can be obtained after chemical reduction of azodyes to aromatic amines. The structures of the non‐sulphonated reduction products can be determined by reversed‐phase HPLC/MS with positive‐ion atmospheric pressure chemical ionisation and of the sulphonated products by ion‐pairing HPLC/MS with negative‐ion ESI.  相似文献   

12.
A sensitive and accurate HPLC‐MS/MS method was developed for the simultaneous determination of dextromethorphan, dextrorphan and chlorphenamine in human plasma. Three analytes were extracted from plasma by liquid–liquid extraction using ethyl acetate and separated on a Kromasil 60‐5CN column (3 µm, 2.1 × 150 mm) with mobile phase of acetonitrile–water (containing 0.1% formic acid; 50:50, v/v) at a flow rate of 0.2 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The calibration curve was linear over the range of 0.01–5 ng/mL for dextromethorphan, 0.02–5 ng/mL for dextrorphan and 0.025–20 ng/mL for chlorphenamine. The lower limits of quantification for dextromethorphan, dextrorphan and chlorphenamine were 0.01, 0.02 and 0.025 ng/mL, respectively. The intra‐ and inter‐day precisions were within 11% and accuracies were in the range of 92.9–102.5%. All analytes were proved to be stable during sample storage, preparation and analytic procedures. This method was first applied to the pharmacokinetic study in healthy Chinese volunteers after a single oral dose of the formulation containing dextromethorphan hydrobromide (18 mg) and chlorpheniramine malaeate (8 mg). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Yunaconitine (YAC) is a toxic aconite alkaloid that is considered to be a hidden aconite poison since it is frequently found in body fluids from aconite poisoning patients, but has not been well studied in commonly used herbal drugs. In this paper, a rapid and sensitive ultra high‐performance liquid chromatography–tandem mass spectrometry (UHPLC‐MS/MS) detection combined with microwave‐assisted extraction (MAE) was developed for high throughput simultaneous determination of YAC and six other toxic aconite alkaloids in 31 samples of crude, processed aconites and aconite‐containing drugs. The optimized method showed excellent linearity, precision, accuracy and recovery for all target compounds with short run time. YAC was detected in some samples with contents from 0.015 to 10.41 mg/g. This is the first report on the determination of YAC in Radix Aconiti, Radix Aconiti Kusnezoffii and aconite‐containing drugs. This newly developed method facilitates the rapid screening of YAC and related toxic aconite alkaloids and allows YAC to be used as a chemical marker for the quality control of aconites and aconite‐containing drugs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive, and rapid method for determination of L‐trantinterol in rat plasma was developed for the first time by using LC coupled to MS/MS based on chiral stationary phase. A baseline separation of the enantiomers of trantinterol was achieved on a Chirobiotic V column, using a mixture of acetonitrile–methanol–ammonia–acetic acid (80:20:0.01:0.02, v/v/v/v) as the mobile phase. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via ESI. The calibration curve was linear in concentration range from 0.270 to 108 ng/mL in plasma with the lower limit of quantification of 0.270 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 10.9% and the accuracy (relative error) was from 2.6 to 9.2% at all quality control levels. The method has been successfully applied to a study of L‐trantinterol pharmacokinetics in rats.  相似文献   

15.
Major depressive disorder is a severe, life‐threatening and highly prevalent psychiatric disorder. A high percentage of people suffering from depression are characterized by hyperactivity of the hypothalamic–pituitary–adrenal axis, resulting in plasma glucocorticoid (cortisol in human and corticosterone in rodent) elevations. Glucocorticoid is a critical molecule in the onset of pathology of depression. A simple, highly sensitive and specific method based on ultra‐fast liquid chromatography–tandem mass spectrometry method has been developed for the quantitation of corticosterone in mouse plasma for the first time, which provides technical support for the high‐throughput measurement for clinical determination of corticosterone in biological samples. Samples were spiked with methanol to precipitate the protein, and then chromatographed on an Agilent Zorbax Eclipse Plus C18 (100 × 2.1 mm,1.8 µm) column by linear gradient elution with methanol and 0.1% formic acid as the mobile phase within 5 min. The detection of corticosterone was performed on ultra‐fast liquid chromatography–triple quadrupole tandem mass spectrometry in the positive ion. The ions [M + H]+ m/z 347.2 → m/z 311.1 for corticosterone and [M + H]+ m/z 363.2 → m/z 327.2 for hydrocortisone (internal standard) were used for quantitative determination. The lower quantification limit for corticosterone was 1 ng/mL. The validated method was successfully applied to the quantitation of corticosterone in mouse plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid, selective and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed to determine meloxicam in beagle dog plasma. Sample pretreatment involved a one‐step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on a Venusil ASB‐C18 column with mobile phase consisting of methanol–water (containing 0.1% formic acid) (75:25, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization source. Each plasma sample was chromatographed within 4.1 min. The linear calibration curves for meloxicam was obtained in the concentration range of 10.3–4.12 × 103 ng/mL (r ≥ 0.99). The intra‐ and inter‐day precisions (relative standard deviation) were ≤ 15%, and accuracy (relative error) was within ±7.3%. The method herein described was fully validated and successfully applied to the pharmacokinetic study of meloxicam tablets in beagle dog.  相似文献   

17.
Diabetes is a major global health problem which requires new studies for its prevention and control. Scoparia dulcis , a herbal product, is widely used for treatment of diabetes. Recent studies demonstrate coixol as a potent and nontoxic insulin secretagog from S. dulcis . This study focuses on developing two quantitative methods of coixol in S. dulcis methanol‐based extracts. Quantification of coixol was performed using high‐performance liquid chromatography–tandem mass spectrometry (method 1) and high‐performance liquid chromatography–ultraviolet detection (method 2) with limits of detection of 0.26 and 11.6 pg/μL, respectively, and limits of quantification of 0.78 and 35.5 pg/μL, respectively. S. dulcis is rich in coixol content with values of 255.5 ± 2.1 mg/kg (method 1) and 220.4 ± 2.9 mg/kg (method 2). Excellent linearity with determination coefficients >0.999 was achieved for calibration curves from 10 to 7500 ng/mL (method 1) and from 175 to 7500 ng/mL (method 2). Good accuracy (bias < −8.6%) and precision (RSD < 8.5%) were obtained for both methods. Thus, they can be employed to analyze coixol in plant extracts and herbal formulations.  相似文献   

18.
A new method for the analysis of cycloserine (4‐amino‐3‐isoxazolidinone, CYC) in rat microdialysis samples has been developed. This method consists of derivatizing the CYC with benzoyl chloride, which transforms primary amines into highly stable derivatives. An attractive feature of this method was that the derivatization reaction is straightforward and can be completed within 10 min. The formed derivative, in contrast to the non‐derivatized analyte, exhibited increased chromatographic retention and decreased matrix effects resulting from the co‐elution of other components using reversed‐phase liquid chromatography and on‐line switching. Detection on a quadrupole–linear ion trap mass spectrometer (AB3200 Q‐Trap) was performed using electrospray tandem mass spectrometry in multiple reaction monitoring mode. Various derivatization parameters were optimized in order to improve chromatographic separation and minimize ion suppression. In particular, the benzoylation reaction was improved to enhance the reproducibility and sensitivity of the chromatographic method. The transition m/z 207.1 → 105.1 was acquired to monitor the CYC derivatization products. The method was fully validated for its sensitivity, selectivity, matrix effect and stability. A good linearity over the selected range (r > 0.99, range = 22–2200 mg/L), as well as accuracy and precision within ±7% of the target values, was obtained. The assay described herein was successfully applied to quantitatively measure CYC in the lung and blood of anesthetized rats.  相似文献   

19.
Phenamacril is a new broad‐spectrum fungicide that is commonly used for the control of fungal diseases in wheat and rice. In this study, ultra‐high‐performance liquid chromatography–tandem mass spectrometry was used to establish a method for analyzing the residual phenamacril in flour and rice based on the improved QuEChERS (quick, easy, cheap, effective, rugged and safe) method using Z‐Sep+ as the adsorbent in the pre‐treatment process. The average recovery of phenamacril in flour and rice was 82.2–96.0%, the relative standard deviation was 2.1–5.6% and the limit of quantification was 0.5 μg/kg. The accuracy and sensitivity of this method meet the requirements for residue analysis. The method was applied to commercially available flour and rice samples, and the detected concentrations of phenamacril were 0.005–0.033 mg/kg. This method provides technical support for the safety evaluation of phenamacril.  相似文献   

20.
A simple, rapid and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of honokiol in beagle dog plasma after intravenous guttae. With addition of the internal standard magnolol, plasma samples were precipitated with methanol and separated on a Shim‐pack XR‐ODS II (2.0 × 100 mm, 2.2 µm) with isocratic elution of methanol and water (80:20) solution at a flow rate of 0.2 mL/min. A good separation of honokiol was achieved within 3.5 min. Quantification was performed on a Waters Quattro Premier XE triple quadrupole mass spectrometer with electrospray ionization inlet in the negative multiple reaction monitoring mode. Good linearity was obtained over the concentration range of 5.12–15580 ng/mL (r2 > 0.998). Intra‐ and inter‐day precisions were <13.10%, and accuracy ranged from 89.21 to 99.92%. The lower limit of quantification for honokiol was 5.12 ng/mL, and honokiol was stable under various conditions (three freeze–thaw cycles, short‐term temperature, post‐preparative and long‐term temperature conditions.). This validated method was successfully applied to the pharmacokinetic study of honokiol in dogs by intravenous guttae. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号