共查询到20条相似文献,搜索用时 22 毫秒
1.
Yao‐Rong Zheng Hai‐Bo Yang Prof. Dr. Koushik Ghosh Liang Zhao Dr. Peter J. Stang Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(29):7203-7214
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described. 相似文献
2.
Cécile Vigier‐Carrière Dr. Tony Garnier Déborah Wagner Dr. Philippe Lavalle Dr. Morgane Rabineau Dr. Joseph Hemmerlé Dr. Bernard Senger Prof. Pierre Schaaf Dr. Fouzia Boulmedais Dr. Loïc Jierry 《Angewandte Chemie (International ed. in English)》2015,54(35):10198-10201
The design and control of molecular systems that self‐assemble spontaneously and exclusively at or near an interface represents a real scientific challenge. We present here a new concept, an active seed layer that allows to overcome this challenge. It is based on enzyme‐assisted self‐assembly. An enzyme, alkaline phosphatase, which transforms an original peptide, Fmoc‐FFY(PO42?), into an efficient gelation agent by dephosphorylation, is embedded in a polyelectrolyte multilayer and constitutes the “reaction motor”. A seed layer composed of a polyelectrolyte covalently modified by anchoring hydrogelator peptides constitutes the top of the multilayer. This layer is the nucleation site for the Fmoc‐FFY peptide self‐assembly. When such a film is brought in contact with a Fmoc‐FFY(PO42?) solution, a nanofiber network starts to form almost instantaneously which extents up to several micrometers into the solution after several hours. We demonstrate that the active seed layer allows convenient control over the self‐assembly kinetics and the geometric features of the fiber network simply by changing its peptide density. 相似文献
3.
The evaporation driven self‐assembly of novel colloidal silica Janus particles was evaluated by scanning electron microscopy in comparison to unfunctionalized silica particles. The cyclodextrin‐ and azobenzene‐modified compound was obtained utilizing Pickering emulsion approach, in which the particles were immobilized on solidified wax droplets and subsequently functionalized. Silica particles were modified with 3‐aminopropyl trimethoxysilane and afterward reacted with tosyl‐β‐CD or phenylazo(benzoic acid), respectively. Mesoscopic structures of the colloidal dispersions, as dried films from aqueous solution, have been investigated by scanning electron microscopy and dynamic light scattering. Interestingly, it has been observed that the Janus particles show a significantly different evaporation‐induced assembly than the unmodified particles. 相似文献
4.
5.
6.
Food‐grade biomaterials, like β‐lactoglobulin, bovine serum albumin, and ovalbumin, can assemble into fibrils. Using the irreversible fibril formation for β‐lactoglobulin, gels can be formed even at protein concentrations of 0.07%. These fibrillar mesostructures form new structuring materials for food and pharmaceutical applications.
7.
Carboxylated peptide‐functionalized gold nanoparticles (peptide‐GNPs) self‐assemble into two‐ and three‐dimensional nanostructures in the presence of various heavy metal ions (i.e. Pb2+, Cd2+, Cu2+, and Zn2+) in aqueous solution. The assembly process is monitored by following the changes in the surface plasmon resonance (SPR) band of gold nanoparticles in a UV/Vis spectrophotometer, which shows the development of a new SPR band in the higher‐wavelength region. The extent of assembly is dependent on the amount of metal ions present in the medium and also the time of assembly. TEM analysis clearly shows formation of two‐ and three‐dimensional nanostructures. The assembly process is completely reversible by addition of alkaline ethylenediaminetetraacetic acid (EDTA) solution. The driving force for the assembly of peptide‐GNPs is mainly metal ion/carboxylate coordination. The color and spectral changes due to this assembly can be used for detection of these heavy‐metal ions in solution. 相似文献
8.
Magnetically Encoded Luminescent Composite Nanoparticles through Layer‐by‐Layer Self‐Assembly 下载免费PDF全文
Prof. Dr. Erqun Song Weiye Han Hongyan Xu Yunfei Jiang Dan Cheng Prof. Dr. Yang Song Prof. Dr. Mark T. Swihart 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(45):14642-14649
Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2@n Fe3O4 composite nanoparticles, by using a layer‐by‐layer self‐assembly approach based on electrostatic interactions, is described. Silica‐coated CdTe quantum dots (CdTe@SiO2) serve as core templates for the deposition of alternating layers of Fe3O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2@n Fe3O4 (n=1, 2, 3, …?) composite nanoparticles with a defined number (n) of Fe3O4 layers. Composite nanoparticles were characterized by zeta‐potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2@n Fe3O4 composite nanoparticles exhibited excellent luminescence properties coupled with well‐defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near‐simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2@n Fe3O4 nanoparticles. 相似文献
9.
Dr. Dimitrios Priftis Dr. Lorraine Leon Ziyuan Song Dr. Sarah L. Perry Khatcher O. Margossian Anna Tropnikova Prof. Jianjun Cheng Prof. Matthew Tirrell 《Angewandte Chemie (International ed. in English)》2015,54(38):11128-11132
Reported is the ability of α‐helical polypeptides to self‐assemble with oppositely‐charged polypeptides to form liquid complexes while maintaining their α‐helical secondary structure. Coupling the α‐helical polypeptide to a neutral, hydrophilic polymer and subsequent complexation enables the formation of nanoscale coacervate‐core micelles. While previous reports on polypeptide complexation demonstrated a critical dependence of the nature of the complex (liquid versus solid) on chirality, the α‐helical structure of the positively charged polypeptide prevents the formation of β‐sheets, which would otherwise drive the assembly into a solid state, thereby, enabling coacervate formation between two chiral components. The higher charge density of the assembly, a result of the folding of the α‐helical polypeptide, provides enhanced resistance to salts known to inhibit polypeptide complexation. The unique combination of properties of these materials can enhance the known potential of fluid polypeptide complexes for delivery of biologically relevant molecules. 相似文献
10.
Yanchai Zhao Dr. Elena Tomšík Prof. Jixiao Wang Zuzana Morávková Dr. Alexander Zhigunov Dr. Jaroslav Stejskal Prof. Dr. Miroslava Trchová 《化学:亚洲杂志》2013,8(1):129-137
A great number of nano/microscaled morphologies have recently been prepared during the oxidation of aniline. At the early stage of oxidation, aniline oligomers are obtained, often in spectacular morphologies depending on reaction conditions. Herein, the flower‐like hierarchical architectures assembled from aniline oligomers by a template‐free method are reported. Their formation process is ascribed to the self‐assembly of oligoanilines through non‐covalent interactions, such as hydrogen bonding, hydrophobic forces, and π–π stacking. The model of directional growth is offered to explain the formation of petal‐like objects and, subsequently, flowers. In order to investigate the chemical structure of the oligomers, a series of characterizations have been carried out, such as matrix‐assisted laser desorption ionization, time‐of‐flight mass spectrometry, gas chromatography coupled with mass spectrometry analysis, X‐ray diffraction, and UV/Vis, Fourier‐transform infrared, and Raman spectroscopies. Based on the results of characterization methods, a formation mechanism for aniline oligomers and their self‐assembly is proposed. 相似文献
11.
Coordination‐Driven Self‐Assembly of Carbazole‐Based Metallodendrimers with Generation‐Dependent Aggregation‐Induced Emission Behavior 下载免费PDF全文
Wen‐Jia Fan Bin Sun Jianqiu Ma Prof. Dr. Xiaopeng Li Prof. Dr. Hongwei Tan Prof. Dr. Lin Xu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(37):12947-12959
A new family of 120° carbazole‐based dendritic donors D1 – D3 have been successfully designed and synthesized, from which a series of novel supramolecular carbazole‐based metallodendrimers with well‐defined shapes and sizes were successfully prepared by [2+2] and [3+3] coordination‐driven self‐assembly. The structures of newly designed rhomboidal and hexagonal metallodendrimers were characterized by multinuclear NMR (1H and 31P) spectroscopy, ESI‐TOF mass spectrometry, FTIR spectroscopy, and the PM6 semiempirical molecular orbital method. The fluorescence emission behavior of ligands D1 – D3 , rhomboidal metallodendrimers R1 – R3 , and hexagonal metallodendrimers H1 – H3 in mixtures of dichloromethane and n‐hexane with different n‐hexane fractions were investigated. The results indicated that D1 – D3 featured typical aggregation‐induced emission (AIE) properties. However, different from ligands D1 – D3 , metallodendrimers R1 – R3 and H1 – H3 presented interesting generation‐dependent AIE properties. Furthermore, evidence for the aggregation of these metallodendrimers was confirmed by a detailed investigation of dynamic light‐scattering, Tyndall effect, and SEM. This research not only provides a highly efficient strategy for constructing carbazole‐based dendrimers with well‐defined shapes and sizes, but also presents a new family of carbazole‐based dendritic ligands and rhomboidal and hexagonal metallodendrimers with interesting AIE properties. 相似文献
12.
13.
Two well‐defined diblock copolymers with quadruple hydrogen‐bonding groups on one block, denoted PSUEA‐1 and PSUEA‐2 , have been synthesized, and novel snowflake‐shaped nanometer‐scale aggregates, self‐assembled by such diblock copolymers in non‐polar solvents, have been observed. The micellar dimensions were investigated by DLLS and SLLS. Their morphologies were studied by TEM. Since the degrees of polymerization of the Upy‐containing blocks of PSUEA‐1 and PSUEA‐2 are quite similar and the polystyrene block of the PSUEA‐1 is longer than that of the PSUEA‐2 , a subtle but identifiable difference between the sizes and structures of the PSUEA‐1 and PSUEA‐2 aggregates was noticed and characterized.
14.
Hanna Jędrzejewska Michał Wierzbicki Dr. Piotr Cmoch Prof. Kari Rissanen Prof. Agnieszka Szumna 《Angewandte Chemie (International ed. in English)》2014,53(50):13760-13764
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly. 相似文献
15.
Amphiphilic Janus Gold Nanoparticles Prepared by Interface‐Directed Self‐Assembly: Synthesis and Self‐Assembly 下载免费PDF全文
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures. 相似文献
16.
17.
18.
Dr. Daniel Görl Prof. Dr. Frank Würthner 《Angewandte Chemie (International ed. in English)》2016,55(39):12094-12098
The specific hydrophobic effect involved in the self‐assembly of a bolaamphiphilic perylene bisimide (PBI) dye bearing oligoethylene glycol (OEG) chains has been identified. In pure water, the self‐assembly is entropically driven and enthalpically disfavored, as explored by optical spectroscopy and isothermal titration calorimetry studies. Besides strong π–π interactions between the PBI units that are primarily of enthalpic nature, the major contribution to the self‐assembly is the gain of entropy by release of confined water molecules from the hydration shell of the hydrophilic OEG moieties. Both contributions favor self‐assembly, but their countervailing thermodynamic parameters are reflected in an uncommon temperature dependence, which can be inverted upon gradual addition of an organic cosolvent that makes the π–π interaction increasingly dominant. 相似文献
19.
Chih‐Yuan Hsu Shih‐Chieh Chang Keh‐Ying Hsu Ying‐Ling Liu 《Macromolecular rapid communications》2013,34(8):689-694
In this paper, self‐assembled polymeric toroids formed by a temperature‐driven process are reported. Rhodamine B (RhB) end‐capped poly(N‐isopropylacrylamide) (PNIPAAm) demonstrating a lower critical solution temperature (LCST) is prepared. In a two‐phase system, the polymer in the aqueous phase could move to the chloroform phase on raising the temperature above its LCST. This temperature‐driven process results in the formation of polymeric toroids in the chloroform phase, and the strategy affords a new pathway to toroidal self‐assembly of polymers. Moreover, the photoluminescent behavior of the RhB end‐capped PNIPAAm species formed by the process is also studied and discussed.