首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures.  相似文献   

3.
The ability of Ex 2 Box4+ as a host, able to trap guests containing both π‐electron rich (polycyclic aromatic hydrocarbons‐PAHs) and π‐electron poor (quinoid‐ and nitro‐PAHs) moieties was investigated to shed light on the main factors that control the host–guest (HG) interaction. The nature of the HG interactions was elucidated by energy decomposition (EDA‐NOCV), noncovalent interaction (NCI), and magnetic response analyses. EDA‐NOCV reveals that dispersion contributions are the most significant to sustain the HG interaction, while electrostatic and orbital contributions are very tiny. In fact, no significant covalent character in the HG interactions was observed. The obtained results point strictly to NCIs, modulated by dispersion contributions. Regardless of whether the guests contain π‐electron‐rich or π‐electron‐poor moieties, and no significant charge‐transfer was observed. All in all, HG interactions between guests 3‐14 and host 2 are predominantly modulated by π‐π stacking.  相似文献   

4.
Three chiral stationary phases were prepared by dynamic coating of sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD) with different degrees of substitution, onto strong anion‐exchange stationary phases. The enantioselective potential and stability of newly prepared chiral stationary phases were examined using a set of structurally different chiral analytes. Measurements were performed in RP‐HPLC. Mobile phases consisted of methanol/formic acid, pH 2.10, and methanol/10 mM ammonium acetate buffer, pH 4.00, in various volume ratios. SBE‐β‐CDs with degrees of substitution (DS) 4, 6.3, and 10 proved suitable for the enantioseparation of 14, 11, and 8 analytes, respectively. The SBE‐β‐CD DS 4 based chiral stationary phase enabled the enantioseparation of the nearly all basic and neutral compounds. Chiral stationary phases with higher sulfobutylether‐β‐cyclodextrin substitution (especially DS 10) yielded higher enantioresolution values for acidic compounds.  相似文献   

5.
Control of mobile π‐electrons is one of the fundamental issues in the organic optoelectronics for designing the next generation ultrafast switching devices. The optimal control simulations of coherent π‐electron rotations in (P)‐2,2’‐biphenol, which is the typical nonplanar aromatic molecule with axial chirality, were performed by taking into account two types of the control targets: one is generation of the maximum π‐angular momentum, and the other is the maintaining of the generated unidirectional angular momentum during a setting time duration. The optimal control pulse for each target is designed. The analysis of the simulation results shows that the effective maintaining of the unidirectional angular momentum can be realized by applying 2π pulse to one of the electronic excited states forming the coherent electronic state. The 2π pulse prevents the reverse rotation of the π‐electrons by dumping the excited state population to the ground state and subsequently by pumping the population back to the excited state. The present results provide a theoretical basis for the designing next generation ultrafast switching devices made by organic aromatic molecules.  相似文献   

6.
An efficient two‐step method has been developed for the separation of β‐cypermethrin stereoisomers by supercritical fluid chromatography with polysaccharide chiral stationary phases. With respect to retention, selectivity, and resolution of β‐cypermethrin, the effects of chiral stationary phases, cosolvents, mobile phases, and column temperature have been studied in detail. Through a two‐step separation, β‐cypermethrin was firstly separated by using a cellulose‐derived chiral stationary phase to obtain two stereoisomeric pairs, and further resolved on an amylose‐based chiral stationary phase to produce four enantiopure stereoisomers. The electronic circular dichroism patterns of the first‐ and the third‐eluted isomers in methanol solution showed the mirror image of each other in the wavelength range 200∼300 nm, indicating that they were a pair of enantiomers. Moreover, the second‐ and the fourth‐eluted isomers were also enantiomers. This proposed two‐step strategy showed low solvent consumption, fast separation speed, and high‐purity, which may provide an effective approach for preparative separation of compounds with multiple chiral centers and difficult‐to‐separate multicomponent samples.  相似文献   

7.
Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion–π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π‐acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π‐acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α‐protons in the 1H NMR spectra. The reactivity of these protons on π‐acidic surfaces is measured by hydrogen–deuterium (H–D) exchange for 11 different examples, excluding controls. The velocity of H–D exchange increases with π acidity (NDI core substituents: SO2R>SOR>H>OR>OR/NR2>SR>NR2). The H–D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11–13 atoms). Most importantly, H–D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)‐macrocycle is reported). For maximal π acidity, transition‐state stabilizations up to ?18.8 kJ mol?1 are obtained for H–D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa=10.9 calculates to a ΔpKa=?5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as “impossible” in biology, the found enolate–π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven‐component π‐acidity gradient over almost 1 eV demonstrates quantitatively that such important anion–π activities can be expected only from strong enough π acids.  相似文献   

8.
Homogeneous π‐stacking dimers of phenalenyl and its derivatives have gained tremendous interest as components of conducting organic materials. For the first time, we investigate theoretically heterogeneous phenalenyl π‐dimers. Key parameters, including charge transfer, interaction energy, singly occupied molecular orbital (SOMO) energy, and spin density, are studied with the help of density functional theory. We find that the amount of charge transfer between the two monomers in phenalenyl π‐dimers correlates with the difference in the SOMO energies of the constituent monomers, where the SOMO energy plays the role of a monomer (group) electronegativity index. Charge transfer plays an important role in stabilizing the heterodimers while maintaining a significant diradicaloid character. For five heterodimers the interaction energy is found to be as large as ?30 to ?50 kcal mol?1. The presented correlation between the monomer SOMO energy levels and their stability can provide a simple predictive tool to design new highly stable π‐stacking heterodimers.  相似文献   

9.
Herein, we address the question whether anion–π and cation–π interactions can take place simultaneously on the same aromatic surface. Covalently positioned carboxylate–guanidinium pairs on the surface of 4‐amino‐1,8‐naphthalimides are used as an example to explore push–pull chromophores as privileged platforms for such “ion pair–π” interactions. In antiparallel orientation with respect to the push–pull dipole, a bathochromic effect is observed. A red shift of 41 nm found in the least polar solvent is in good agreement with the 70 nm expected from theoretical calculations of ground and excited states. Decreasing shifts with solvent polarity, protonation, aggregation, and parallel carboxylate–guanidinium pairs imply that the intramolecular Stark effect from antiparallel ion pair–π interactions exceeds solvatochromic effects by far. Theoretical studies indicate that carboxylate–guanidinium pairs can also interact with the surfaces of π‐acidic naphthalenediimides and π‐basic pyrenes.  相似文献   

10.
The intermolecular π‐hole···π‐electrons interactions between F2ZO (Z = C, Si, Ge) molecules and unsaturated hydrocarbons including acetylene, ethylene, 1,3‐butadiene and benzene were constructed to reveal the differences of tetrel bonds forming by carbon and heavier tetrel atoms. The ab initio computation in association with topological analysis of electron density, natural bond orbital, and energy decomposition analysis demonstrate that the strength of Si···π and Ge···π tetrel bonds is much stronger than that of C···π tetrel bonds. The Si···π and Ge···π tetrel bonds exhibit covalent or partially covalent interaction nature, while the weak C···π tetrel bonds display the hallmarks of noncovalent interaction, the electrostatic interaction is the primary influencing factor. The Si···π and Ge···π interactions are determined by both the σ‐ and π‐electron densities, while the C···π interactions are dominated mainly by the π‐electron densities. The π‐hole···π‐electrons tetrel bonds are dominated by electrostatic interaction, and polarization has a comparable contribution in the Si···π and Ge···π tetrel bonds.  相似文献   

11.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

12.
The intrinsic features of (hetero‐arene)–metal interactions have been elusive mainly because the systematic structure analysis of non‐anchored hetero‐arene–metal complexes has been hampered by their labile nature. We report successful isolation and systematic structure analysis of a series of non‐anchored indole–palladium(II) complexes. It was revealed that there is a σ–π continuum for the indole–metal interaction, while it has been thought that the dominant coordination mode of indole to a metal center is the Wheland‐intermediate‐type σ‐mode in light of the seemingly strong electron‐donating ability of indole. Several factors which affect the σ‐ or π‐character of indole–metal interactions are discussed.  相似文献   

13.
Recently, we have reported on calculation of π‐electron ring currents in several smaller fully benzenoid hydrocarbons having up to eight fused benzene rings and five Clar π‐aromatic sextets. In contrast to early HMO ring current calculations and more recent ab initio calculations of π‐electron density, our current calculations are based on a graph theoretical model in which contributions to ring currents comes from currents associated with individual conjugated circuits. In this contribution, we consider several larger fully benzenoid hydrocarbons having from 9 to 13 fused rings and from six or seven π‐aromatic sextets. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
In this review, we focus on the synthesis of π‐conjugated functional molecules by the oxidation of aromatic amines, which is one of the most effective methods for the construction of C?C, C?N, and N?N bonds between two π‐conjugated molecular units, and consider their characteristics and applications. Polyanilines are the most common products of the oxidation of aromatic amines; however, azobenzenes, phenazines, and 1,1′‐binaphthyl‐2,2′‐diamines may be produced in this manner also, depending on the reaction conditions. Recent advances in the methodology of aniline oxidation have led to the development of high‐regioselectivity industrial‐scale syntheses of optically or electroactive π‐functional dyes containing nitrogen atoms. In particular, the regioselective fusion of π‐extended aromatic amines can be used to prepare distorted π‐conjugated molecules under mild reaction conditions, allowing the construction of unprecedented curved nitrogen‐containing π‐conjugated molecules.  相似文献   

15.
(S)‐N‐(3,5‐dinitrobenzoyl)leucine‐N‐phenyl‐N‐propylamine‐bonded silica was used as a chiral stationary phase for separation of a set of racemic π‐acidic and π‐basic α‐amino acid amides in electrolyteless ACN‐water eluents by CEC in the RP and polar organic (PO) modes. The effect of the amount of water in the ACN‐water eluent on chiral separation was examined. As water is added to ACN, retention was shortened but resolution and selectivity deteriorated severely. Retention, enantioselectivity, and resolution factors obtained in 100% ACN were compared with those in an n‐hexane‐isopropanol eluent with a small amount of water by normal phase (NP) CEC. Much shorter retention times with comparable enantioselectivities were observed with 100% ACN, demonstrating the advantage of separation on (S)‐N‐(DNB)leucine‐N‐phenyl‐N‐propylamine‐bonded silica in PO‐CEC over NP‐CEC.  相似文献   

16.
The preference of π‐stacking interactions for parallel‐displaced (PD) and twisted (TW) conformations over the fully eclipsed sandwich (S) in small π‐stacked dimers of benzene, pyridine, pyrimidine, 1,3,5‐trifluorobenzene, and hexafluorobenzene are examined in terms of enhancement of the inter‐ring density through mixing of the monomer orbitals (MOs). PD and/or TW conformations are consistent with a non‐zero “stack bond order” (SBO), defined in analogy to the bond order of conventional MO theory, as the difference in the occupation of bonding and antibonding π‐type dimer MOs. In the S conformation, the equal number of bonding and antibonding MOs cancel overall stack bonding character between the monomers for an SBO of zero and an overall repulsive interaction. PD from the S shifts the character of at least one antibonding combination of monomer π‐type MOs with nodes perpendicular to the coordinate for PD to bonding, leading to an attractive nonzero SBO. The inter‐ring density measured through the Wiberg bond index analysis shows an enhancement at the PD conformations consistent with greater interpenetration of the monomer densities. This intuitive bonding model for π‐stacking interactions is complementary to highly accurate calculations of π‐stacking energies and allows a predictive understanding of relative stability using cheaper quantum chemical methods.  相似文献   

17.
Series of typical π‐type and pseudo‐π‐type halogen‐bonded complexes B ··· ClY and B ··· BrY and hydrogen‐bonded complex B ··· HY (B = C2H4, C2H2, and C3H6; Y = F, Cl, and Br) have been investigated using the MP2/aug‐cc‐pVDZ method. A striking parallelism was found in the geometries, vibrational frequencies, binding energies, and topological properties between B ··· XY and B ··· HY (X = Cl and Br). It has been found that the lengths of the weak bond d(X ··· π)/d(H ··· π), the frequencies of the weak bond ν(X ··· π)/ν(H ··· π), the frequency shifts Δν(X? Y)/Δν(H? Y), the electron densities at the bond critical point of the weak bonds ρc(X ··· π)/ρc(H ··· π), and the electron density changes Δρc(X? Y)/Δρc(H? Y) could be used as measures of the strengths of typical π‐type and pseudo‐π‐type halogen/hydrogen bonds. The typical π‐type and pseudo‐π‐type halogen bond and hydrogen bond are noncovalent interactions. For the same Y, the halogen bond strengths are in the order B ··· ClY < B ··· BrY. For the same X, the halogen bond strength decreases according to the sequence F > Cl > Br that is in agreement with the hydrogen bond strengths B ··· HF > B ··· HCl > B ··· HBr. All of these typical π‐type and pseudo‐π‐type hydrogen‐bonded and halogen‐bonded complexes have the “conflict‐type” structure. Contour maps of the Laplacian of π electron density indicate that the formation of B ··· XY halogen‐bonded complex and B ··· HY hydrogen‐bonded complex is very similar. Charge transfer is observed from B to XY/HY and both the dipolar polarization and the volume of the halogen atom or hydrogen atom decrease on B ··· XY/B ··· HY complex formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Bromoacetate‐substituted [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy]propylsilyl‐appended silica particles (BACD‐HPS), an important and useful synthetic intermediate for preparation of novel types of macrocycles‐capped β‐CD‐bonded silica particles including crown ether/cyclam/calix[4]arene‐capped β‐CD‐bonded silica particles, have been prepared and used as chiral stationary phase for HPLC. This synthetic stationary phase is characterized by means of elemental analysis. For the first time, the chromatographic behavior of BACD‐HPS was systematically evaluated with several disubstituted benzenes and some chiral drug compounds under both normal and RP conditions in HPLC. The results show that BACD‐HPS has excellent selectivity for the separation of aromatic positional isomers and chiral isomers of some drug compounds when used as stationary phase in HPLC.  相似文献   

19.
The combination of π‐stacked with π‐conjugated building blocks offers an essential strategy to construct multifunctional organic semiconductors (MOSs) with the unique optoelectrical properties. Covalent hybrids can efficiently avoid the intrinsic phase‐separation defects in corresponding blend system. In this contribution, poly(vinylcarbazole) tethered with terfluorene, PVK‐TF, as a double‐channeled π‐stacked and π‐conjugated hybrid (SCH), has been constructed via Friedal‐Crafts click postmodification (FCCP). The chemical structure and optoelectrical property were determined by GPC, UV–vis, PL, TGA, DSC, and CV. Its PL spectra in the annealing thin film at N2 atmosphere without low‐energy emission bands centered at the 530 nm indicates that no π‐stacks between carbazole and TF or among TFs dominate the whole condensed phase, which is in agreement with the intrachain T‐shaped π‐pitched motifs in molecular modeling simulation due to steric hindrance effect in complicated diarylfluorenes (CDAFs). A supporting prototype stable deep‐blue PLED was successfully obtained with an Internationale de l'Eclairage (CIE) coordinates of (0.20, 0.10) and a width at half maximum (FWHM) of about 60 nm at high current density of 100 mA/cm2 (35 V). Deep‐blue PVK‐TF is a promising MOS for hole‐transporting and host materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5221–5229, 2009  相似文献   

20.
π‐Conjugated molecular cages are very challenging targets in structural organic chemistry, supramolecular chemistry, and materials science. The synthesis and physical characterizations are reported of the first three‐dimensionally π‐conjugated diradical molecular cage PTM‐C, in which two polychlorotriphenylmethyl (PTM) radicals are linked by three bis(3,6‐carbazolyl) bridges. This cage compound was synthesized mainly by intermolecular Yamamoto coupling followed by deprotonation and oxidation. It is stable and its structure was confirmed by X‐ray crystallographic analysis. The two carbon‐centered PTM radicals are weakly coupled through electronic interactions with the carbazole spacers, as revealed by optical, electronic, and magnetic measurements as well as theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号