首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and sensitive liquid chromatography tandem multiple‐stage mass spectrometry (HPLC/MS/MS) method suitable for bulk lisinopril analysis was developed, by which lisinopril and its RSS isomer were separated and differentiated. In the collision‐induced dissociation (CID) mass spectra of the [M + H]+ ions, the abundance of the fragment ion of m/z 246 for lisinopril was about two times higher than the ion of m/z 245; however, the former fragment ion was noted to be a little lower than the latter for RSS isomer at all collision energies. In the CID mass spectra of the [M + Li]+ ion, the abundance of the rearrangement ion of m/z 315 for the RSS isomer was about three times higher than that for lisinopril. Furthermore, the difference was supported by the results of energy‐resolved mass spectrometry (ERMS) in the test range of collision energies. Similar differences were also observed between the CID mass spectra of lisinopril and RSS isomer methylester, which indicated that the RSS isomer could be rapidly characterized by the CID mass spectra of both the protonated and lithium adduct ion. Elemental compositions of all the ions were confirmed by Fourier Transform ion cyclotron resonance ESI mass spectrometry (FT‐ICR‐ESI/MS). In addition, theoretical computations were carried out to support the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
An understanding of the dissociation of penetratin is important for improving its metabolic stability and cargo‐delivery efficiency. In this study, we describe the selective cleavage of the K15–K16 amide bond of penetratin under the low‐energy collision‐induced dissociation condition in mass spectrometry. A variety of penetratin substitutes have been studied in which key basic amino acids have been substituted within the sequence. The calculated structure indicates that an α‐helix structure prevents the fragmentation of the central peptide domain and the side chain of lysine is involved in the proton translocation process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre‐exponential factors were evaluated for more than 10 H‐G complexes via the use of low‐energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s?1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low‐energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (―OPO32?) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (―SO3?) group; however, the latter ones make stronger bonds than those with a carboxylate (―CO2?) group. In addition, it was observed that the presence of trimethylammonium (―N(CH3)3+) or phenyl groups in the guest's structure improves the strength of H‐G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H‐G chemistry studies where comparison of bond dissociation energies is of paramount importance.  相似文献   

4.
A full characterization of sulfoquinovosyldiacylglycerols (SQDGs) in the lipid extract of spinach leaves has been achieved using liquid chromatography/electrospray ionization‐linear quadrupole ion trap mass spectrometry (MS). Low‐energy collision‐induced dissociation tandem MS (MS/MS) of the deprotonated species [M ? H]? was exploited for a detailed study of sulfolipid fragmentation. Losses of neutral fatty acids from the acyl side chains (i.e. [M ? H ? RCOOH]?) were found to prevail over ketene losses ([M ? H ? R'CHCO]?) or carboxylates of long‐chain fatty acids ([RCOO]?), as expected for gas‐phase acidity of SQDG ions. A new concerted mechanism for RCOOH elimination, based on a charge‐remote fragmentation, is proposed. The preferential loss of a fatty acids molecule from the sn‐1 position (i.e. [M ? H ? R1COOH]?) of the glycerol backbone, most likely due to kinetic control of the gas‐phase fragmentation process, was exploited for the regiochemical assignment of the investigated sulfolipids. As a result, 24 SQDGs were detected and identified in the lipid extract of spinach leaves, their number and variety being unprecedented in the field of plant sulfolipids. Moreover, the prevailing presence of a palmitic acyl chain (16:0) on the glycerol sn‐2 position of spinach SQDGs suggests a prokaryotic or chloroplastic path as the main route for their biosynthesis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Ten ceramides and four cerebrosides were extracted from the starfish Distolasterias nipon by solvent extraction, silica gel column chromatography and reversed‐phase high‐performance liquid chromatography. Structural identification was conducted using tandem mass spectrometry of monosodiated ions desorbed by fast atom bombardment. The complete structures of four cerebrosides were determined by a previously reported method. The high‐energy collision‐induced dissociation (CID) spectral characteristics of ceramides with various structures depend on the number and positions of double bonds on both the N‐acyl and sphingoid chains, the presence of a hydroxyl group or a double bond at the C‐4 position of the sphingoid chain and the presence of an α‐hydroxy group on the N‐acyl chain. The high‐energy CID of the monosodiated ion, [M+Na]+, of each ceramide molecular species generated abundant ions, providing information on the composition of the fatty acyl chains and sphingoid long‐chain bases. Each homologous ion series along the fatty acyl group and aliphatic chain of the sphingoid base was used for locating the double‐bond positions of both chains and hydroxyl groups on the sphingoid base chain. The double‐bond positions were also confirmed by the m/z values of abundant allylic even‐ and odd‐electron ions, and the intensity ratio of the T ion peak relative to the O ion peak. This technique could determine the complete structures of ceramides and cerebrosides in an extract mixture and has great potential for determining other sphingolipids isolated from various biological sources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Kinetic isotope effects (KIEs) occurring in mass spectrometry (MS) can provide in‐depth insights into the fragmentation behaviors of compounds of interest in MS. Yet, the fundamentals of KIEs in collision‐induced dissociation (CID) in tandem mass spectrometry (MS/MS) are unclear, and information about chlorine KIEs (Cl‐KIEs) of organochlorines in MS is particularly scarce. This study investigated the Cl‐KIEs of dichloromethane, trichloroethylene, and tetrachloroethylene during CID using gas chromatography‐electron ionization triple‐quadrupole MS/MS. Cl‐KIEs were evaluated with MS signal intensities. All the organochlorines presented large inverse Cl‐KIEs (<1, the departures of Cl‐KIEs from 1 denote the magnitudes of Cl‐KIEs), showing the largest magnitudes of 0.797, 0.910, and 0.892 at the highest collision energy (60 eV) for dichloromethane, trichloroethylene, and tetrachloroethylene, respectively. For dichloromethane, both intra‐ion and inter‐ion Cl‐KIEs were studied, within the ranges of 0.820–1.020 and 0.797–1.016, respectively, showing both normal and inverse Cl‐KIEs depending on collision energies. The observed Cl‐KIEs generally declined from large normal to extremely large inverse values with increasing collision energies from 0 to 60 eV but were inferred to be independent of MS signal intensities. The Cl‐KIEs are dominated by critical energies at low internal energies of precursor ions, resulting in normal Cl‐KIEs; while at high internal energies, the Cl‐KIEs are controlled by rotational barriers (or looseness/tightness of transition states), which lead to isotope‐competitive reactions in dechlorination and thereby inverse Cl‐KIEs. It is concluded that the Cl‐KIEs may depend on critical energies, bond strengths, available internal energies, and transition state looseness/tightness. The findings of this study yield new insights into the fundamentals of Cl‐KIEs of organochlorines during CID and may be conducive to elucidating the underlying mechanisms of KIEs in collision‐induced and photo‐induced reactions in the actual world.  相似文献   

7.
Medium‐sized phosphorus cluster cations were generated by laser ablation of red phosphorus and investigated by the method of collision‐induced dissociation mass spectrometry. Experimental results show that the primary dissociation channels of phosphorus cluster cations of P + 2m+1 (6 ≤ m ≤ 11) are all characterized by the loss of P4 unit. For larger cluster cations, their dissociation pathways were more complex. For those magic cations of P + 8k+1 observed previously, their dissociation pathways progressively change from the loss of P4 unit (for k = 3) to the loss of P8 unit (for k = 4, 5). A new dissociation pathway characterized by the loss of P10 unit was also indentified for larger cations of P + 8k+1 (6 ≤ k ≤ 8). Theoretical calculation also shows that, for cations of P + 2m+1 (4 ≤ m ≤ 10), the dissociation channel characterized by the loss of P4 unit is more energetically favorable than other dissociation channels, which is in good agreement with the experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Successful experiments on the isotope-selective infrared multiphoton dissociation (IR MPD) of nitromethane molecules in the region of stretching vibrations of the NO2 group have been performed for the first time under IR free electron laser (FEL) irradiation in a mixture with the natural content of the15N isotope of 0.4%. The content of the15N isotope in the products of NO dissociation varies within 0.1–1.6% as a function of the laser radiation frequency. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 739–742, April, 1998.  相似文献   

9.
Five glucosylceramides (GlcCers) were isolated by reversed phase high‐performance liquid chromatography from the MeOH extracts of a marine sponge, Haliclona (Reniera) sp., collected from the coast of Ulleung Island, Korea, and analyzed by fast atom bombardment mass spectrometry (FAB–MS) in positive‐ion mode. FAB‐mass spectra of these compounds included protonated molecules [M + H]+ and abundant sodiated molecules [M + Na]+ from a mixture of m‐NBA and NaI. The structures of these GlcCers, which were similar, were elucidated by FAB‐linked scan at constant B/E. To find diagnostic ions for their characterization, the GlcCers were analyzed by collision‐induced dissociation (CID) linked scan at constant B/E. The CID‐linked scan at constant B/E of [M + H]+ and [M + Na]+ precursor ions resulted in the formation of numerous characteristic product ions via a series of dissociative processes. The product ions formed by charge‐remote fragmentation provided important information for the characterization of the fatty N‐acyl chain moiety and the sphingoid base, commonly referred to as the long‐chain base. The product ions at m/z 203 and 502 were diagnostic for the presence of a sodiated sugar ring and β‐D ‐glucosylsphinganine, respectively. For further confirmation of the structure of the fatty N‐acyl chain moiety in each GlcCer, fatty acid methyl esters were obtained from the five GlcCers by methanolysis and analyzed by FAB–MS in positive‐ion mode. On the basis of these dissociation patterns, the structures of the five GlcCers from marine sponge were elucidated. In addition, the accurate mass measurement was performed to obtain the elemental composition of the GlcCers isolated from marine sponge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Interest in mass spectrometry of highly oxidized dimers from α‐pinene oxidation has increased in the atmospheric chemistry field. Here, we apply high‐resolution collision‐induced dissociation mass spectrometry (HR‐CID‐MS) with an atmospheric pressure ionization source to investigate in detail how α‐pinene‐derived dimers are detected and identified by MS. The resulting HR‐CID spectra and specific fragmentation patterns suggest that a large fraction of dimer ions detected in full‐scan mass spectra can be hydrogen‐bonded artifact clusters and the residual small fraction includes covalently bonded actual dimers. We also show how individual fractions of the artifact clusters and actual dimers are calculated using the HR‐CID spectra.  相似文献   

11.
The experimental investigation of site‐specific intra‐ionic hydrogen/deuterium (H/D) exchange in the low‐energy collision‐induced dissociation (CID) product ion spectra of protonated small molecules generated by electrospray ionisation (ESI) is presented. The observation of intra‐ionic H/D exchange in such ions under low‐energy CID conditions has hitherto been rarely reported. The data suggest that the intra‐ionic H/D exchange takes place in a site‐specific manner between the ionising deuteron, localised at either a tertiary amine or a tertiary amine‐N‐oxide, and a γ‐hydrogen relative to the nitrogen atom. Nuclear magnetic resonance (NMR) spectroscopy measurements showed that no H/D exchange takes place in solution, indicating that the reaction occurs in the gas phase. The compounds analysed in this study suggested that electron‐withdrawing groups bonded to the carbon atom bearing the γ‐hydrogen can preclude exchange. The effect of the electron‐withdrawing group appears dependent upon its electronegativity, with lower χ value groups still allowing exchange to take place. However, the limited dataset available in this study prevented robust conclusions being drawn regarding the effect of the electron‐withdrawing group. The observation of site‐specific intra‐ionic H/D exchange has application in the area of structural elucidation, where it could be used to introduce an isotopic label into the carbon skeleton of a molecule containing specific structural features. This could increase the throughput, and minimise the cost, of such studies due to the obviation of the need to produce a deuterium‐labelled analogue by synthetic means. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Collision‐induced dissociation (CID) mass spectra of differently substituted glucosinolates were investigated under negative‐ion mode. Data obtained from several glucosinolates and their isotopologues (34S and 2H) revealed that many peaks observed are independent of the nature of the substituent group. For example, all investigated glucosinolate anions fragment to produce a product ion observed at m/z 195 for the thioglucose anion, which further dissociates via an ion/neutral complex to give two peaks at m/z 75 and 119. The other product ions observed at m/z 80, 96 and 97 are characteristic for the sulfate moiety. The peaks at m/z 259 and 275 have been attributed previously to glucose 1‐sulfate anion and 1‐thioglucose 2‐sulfate anion, respectively. However, based on our tandem mass spectrometric experiments, we propose that the peak at m/z 275 represents the glucose 1‐thiosulfate anion. In addition to the common peaks, the spectrum of phenyl glucosinolate (β‐D ‐Glucopyranose, 1‐thio‐, 1‐[N‐(sulfooxy)benzenecarboximidate] shows a substituent‐group‐specific peak at m/z 152 for C6H5‐C(?NOH)S?, the CID spectrum of which was indistinguishable from that of the anion of synthetic benzothiohydroxamic acid. Similarly, the m/z 201 peak in the spectrum of phenyl glucosinolate was attributed to C6H5‐C(?S)OSO2?. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Positive singly charged ionic liquid aggregates [(Cnmim)m+1(BF4)m]+ (mim = 3‐methylimidazolium; n = 2, 4, 8 and 10) and [(C4mim)m+1(A)m]+ (A = Cl, BF4, PF6, CF3SO3 and (CF3SO2)2N) were investigated by electrospray ionisation mass spectrometry and energy‐variable collision induced dissociation. The electrospray ionisation mass spectra (ESI‐MS) showed the formation of an aggregate with extra stability for m = 4 for all the ionic liquids with the exception of [C4mim][CF3SO3]. ESI‐MS‐MS and breakdown curves of aggregate ions showed that their dissociation occurred by loss of neutral species ([Cnmim][A])a with a ≥ 1. Variable‐energy collision induced dissociation of each aggregate from m = 1 to m = 8 for all the ionic liquids studied enabled the determination of Ecm, 1/2 values, whose variation with m showed that the monomers were always kinetically much more stable than the larger aggregates, independently of the nature of cation and anion. The centre‐of‐mass energy values correlate well with literature data on ionic volumes and interaction and hydrogen bond energies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We developed a straightforward approach for high‐throughput top–down glycolipidomics based on fully automated chip‐nanoelectrospray (nanoESI) high‐capacity ion trap (HCT) multistage mass spectrometry (MSn) by collision‐induced dissociation (CID) in the negative ion mode. The method was optimized and tested on a polysialylated ganglioside fraction (GT1b), which was profiled by MS1 and sequenced in tandem MS up to MS6 in the same experiment. Screening of the fraction in the MS1 mode indicated the occurrence of six [M ? 2H]2? ions which, according to calculation, support 13 GT1 variants differing in their relative molecular mass due to dissimilar ceramide (Cer) constitutions. By stepwise CID MS2–MS5 on the doubly charged ion at m/z 1077.20 corresponding to a ubiquitous GT1b structure, the complete characterization of its oligosaccharide core including the identification of sialylation sites was achieved. Structure of the lipid moiety was further elucidated by CID MS6 analysis carried out using the Y0 fragment ion, detected in MS5, as a precursor. MS6 fragmentation resulted in a pattern supporting a single ceramide form having the less common (d20 : 1/18 : 0) configuration. The entire top–down experiment was performed in a high‐throughput regime in less than 3 min of measurement, with an analysis sensitivity situated in the subpicomolar range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Collision‐induced dissociation of protonated N ,N ‐dibenzylaniline was investigated by electrospray tandem mass spectrometry. Various fragmentation pathways were dominated by benzyl cation and proton transfer. Benzyl cation transfers from the initial site (nitrogen) to benzylic phenyl or aniline phenyl ring. The benzyl cations transfer to the two different sites, and both result in the benzene loss combined with 1,3‐H shift. In addition, after the benzyl cation transfers to the benzylic phenyl ring, 1,2‐H shift and 1,4‐H shift proceed competitively to trigger the diphenylmethane loss and aniline loss, respectively. Deuterium labeling experiments, substituent labeling experiments and density functional theory calculations were performed to support the proposed benzyl cation and proton transfer mechanism. Overall, this study enriches the knowledge of fragmentation mechanisms of protonated N ‐benzyl compounds. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
We have developed a method for protein identification with peptide mass fingerprinting and sequence tagging using nano liquid chromatography (LC)/Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). To achieve greater sensitivity, a nanoelectrospray (nano-ES) needle packed with reversed-phase medium was used and connected to the nano-ES ion source of the FTICR mass spectrometer. To obtain peptide sequence tag information, infrared multiphoton dissociation (IRMPD) was carried out in nano-LC/FTICR-MS analysis. The analysis involves alternating nano-ES/FTICR-MS and nano-ES/IRMPD-FTICR-MS scans during a single LC run, which provides sets of parent and fragment ion masses of the proteolytic digest. The utility of this alternating-scan nano-LC/IRMPD-FTICR-MS approach was evaluated by using bovine serum albumin as a standard protein. We applied this approach to the protein identification of rat liver diacetyl-reducing enzyme. It was demonstrated that this enzyme was correctly identified as 3-alpha-hydroxysteroid dehydrogenase by the alternating-scan nano-LC/IRMPD-FTICR-MS approach with accurate peptide mass fingerprinting and peptide sequence tagging.  相似文献   

17.
The dissolution mechanism of oligosaccharides in N,N‐dimethylacetamide/lithium chloride (DMAc/LiCl), a solvent used for cellulose dissolution, and the capabilities of low‐energy collision‐induced dissociation (low‐energy CID), collision‐induced dissociation (CID), and higher energy collision dissociation (HCD) for structural analysis of carbohydrates were investigated. Comparing the spectra obtained using 3 techniques shows that, generally, when working with monolithiated sugars, CID spectra provide more structurally informative fragments, and glycosidic bond cleavage is the main pathway. However, when working with dilithiated sugars, HCD spectra can be more informative providing predominately cross‐ring cleavage fragments. This is because HCD is a nonresonant activation technique, and it allows a higher amount of energy to be deposited in a short time, giving access to more endothermic decomposition pathways as well as consecutive fragmentations. The difference in preferred dissociation pathways of monolithiated and dilithiated sugars indicates that the presence of the second lithium strongly influences the relative rate constants for cross‐ring cleavages vs glycosidic bond cleavages, and disfavors the latter. Regarding the dissolution mechanism of sugars in DMAc/LiCl, CID and HCD experiments on dilithiated and trilithiated sugars reveal that intensities of product ions containing 2 Li+ or 3 Li+, respectively, are higher than those bearing only 1 Li+. In addition, comparing the fragmentation spectra (both HCD and CID) of LiCl‐adducted lithiated sugar and NaCl‐adducted sodiated sugar shows that while, in the latter case, loss of NaCl is dominant, in the former case, loss of HCl occurs preferentially. The compiled evidence implies that there is a strong and direct interaction between lithium and the saccharide during the dissolution process in the DMAc/LiCl solvent system.  相似文献   

18.
19.
20.
The correlation of anion structure with the fragmentation behavior of deprotonated nitrobenzenesulfonylamino acids was investigated using tandem mass spectrometry, isotopic labeling and computational methods. Four distinct fragmentation pathways resulting from the collision‐induced dissociation (CID) of deprotonated 2‐nitrobenzenesulfonylglycine (NsGly) were characterized. The unusual loss of the aryl nitro substituent as HONO was the lowest energy process. Subsequent successive losses of CO, HCN and SO2 indicated that an ortho cyclization reaction had accompanied loss of HONO. Other pathways involving rearrangement of the ionized sulfonamide group, dual bond cleavage and intramolecular nucleophilic displacement were proposed to account for the formation of phenoxide, arylsulfinate and arylsulfonamide product ions at higher collision energies. The four distinct fragmentation pathways were consistent with precursor–product relationships established by CID experiments, isotopic labeling results and the formation of analogous product ions from 2,4‐dinitrobenzenesulfonylglycine and the Ns derivatives of alanine and 2‐aminoisobutyric acid. The computations confirmed a low barrier for ortho cyclization with loss of HONO and feasible energetics for each reaction step in the four pathways. Computations also indicated that three of the fragmentation pathways started from NsGly ionized at the carboxyl group. Overall, the pathways identified for the fragmentation of the NsGly anion differed from processes reported for anions containing a single functional group, demonstrating the importance of functional group interactions in the fragmentation pathways of multifunctional anions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号