首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
任玉杰 《大学数学》2004,20(2):87-88
提出了一种证明"四色猜想"的新思路.证明了"四色猜想"的一部分,即不含K3的平面图最多是-4可着色的,指出了另一部分的证明思路.  相似文献   

2.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

3.
Neumann‐Lara (1985) and ?krekovski conjectured that every planar digraph with digirth at least three is 2‐colorable, meaning that the vertices can be 2‐colored without creating any monochromatic directed cycles. We prove a relaxed version of this conjecture: every planar digraph of digirth at least five is 2‐colorable. The result also holds in the setting of list colorings.  相似文献   

4.
A 4‐wheel is a graph formed by a cycle C and a vertex not in C that has at least four neighbors in C. We prove that a graph G that does not contain a 4‐wheel as a subgraph is 4‐colorable and we describe some structural properties of such a graph.  相似文献   

5.
In this paper we investigate the problem of clique‐coloring, which consists in coloring the vertices of a graph in such a way that no monochromatic maximal clique appears, and we focus on odd‐hole‐free graphs. On the one hand we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, but on the other hand it is NP‐hard to decide if they are 2‐clique‐colorable, and we do not know if there exists any bound k0 such that they are all k0 ‐clique‐colorable. First we will prove that (odd hole, codiamond)‐free graphs are 2‐clique‐colorable. Then we will demonstrate that the complexity of 2‐clique‐coloring odd‐hole‐free graphs is actually Σ2 P‐complete. Finally we will study the complexity of deciding whether or not a graph and all its subgraphs are 2‐clique‐colorable. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 139–156, 2009  相似文献   

6.
Suppose G=(V, E) is a graph and p ≥ 2q are positive integers. A (p, q)‐coloring of G is a mapping ?: V → {0, 1, …, p‐1} such that for any edge xy of G, q ≤ |?(x)‐?(y)| ≤ pq. A color‐list is a mapping L: V → ({0, 1, …, p‐1}) which assigns to each vertex v a set L(v) of permissible colors. An L‐(p, q)‐coloring of G is a (p, q)‐coloring ? of G such that for each vertex v, ?(v) ∈ L(v). We say G is L‐(p, q)‐colorable if there exists an L‐(p, q)‐coloring of G. A color‐size‐list is a mapping ? which assigns to each vertex v a non‐negative integer ?(v). We say G is ?‐(p, q)‐colorable if for every color‐list L with |L(v)| = ?(v), G is L‐(p, q)‐colorable. In this article, we consider list circular coloring of trees and cycles. For any tree T and for any p ≥ 2q, we present a necessary and sufficient condition for T to be ?‐(p, q)‐colorable. For each cycle C and for each positive integer k, we present a condition on ? which is sufficient for C to be ?‐(2k+1, k)‐colorable, and the condition is sharp. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 249–265, 2007  相似文献   

7.
A graph G is class II, if its chromatic index is at least Δ + 1. Let H be a maximum Δ‐edge‐colorable subgraph of G. The paper proves best possible lower bounds for |E(H)|/|E(G)|, and structural properties of maximum Δ‐edge‐colorable subgraphs. It is shown that every set of vertex‐disjoint cycles of a class II graph with Δ≥3 can be extended to a maximum Δ‐edge‐colorable subgraph. Simple graphs have a maximum Δ‐edge‐colorable subgraph such that the complement is a matching. Furthermore, a maximum Δ‐edge‐colorable subgraph of a simple graph is always class I. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

8.
Let be a plane graph with the sets of vertices, edges, and faces V, E, and F, respectively. If one can color all elements in using k colors so that any two adjacent or incident elements receive distinct colors, then G is said to be entirely k‐colorable. Kronk and Mitchem [Discrete Math 5 (1973) 253‐260] conjectured that every plane graph with maximum degree Δ is entirely ‐colorable. This conjecture has now been settled in Wang and Zhu (J Combin Theory Ser B 101 (2011) 490–501), where the authors asked: is every simple plane graph entirely ‐colorable? In this article, we prove that every simple plane graph with is entirely ‐colorable, and conjecture that every simple plane graph, except the tetrahedron, is entirely ‐colorable.  相似文献   

9.
For a pair of integers k, l≥0, a graph G is (k, l)‐colorable if its vertices can be partitioned into at most k independent sets and at most l cliques. The bichromatic number χb(G) of G is the least integer r such that for all k, l with k+l=r, G is (k, l)‐colorable. The concept of bichromatic numbers simultaneously generalizes the chromatic number χ(G) and the clique covering number θ(G), and is important in studying the speed of hereditary properties and edit distances of graphs. It is easy to see that for every graph G the bichromatic number χb(G) is bounded above by χ(G)+θ(G)?1. In this article, we characterize all graphs G for which the upper bound is attained, i.e., χb(G)=χ(G)+θ(G)?1. It turns out that all these graphs are cographs and in fact they are the critical graphs with respect to the (k, l)‐colorability of cographs. More specifically, we show that a cograph H is not (k, l)‐colorable if and only if H contains an induced subgraph G with χ(G)=k+1, θ(G)=l+1 and χb(G)=k+l+1. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 263–269, 2010  相似文献   

10.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

11.
Suppose G is a graph embedded in Sg with width (also known as edge width) at least 264(2g−1). If PV(G) is such that the distance between any two vertices in P is at least 16, then any 5‐coloring of P extends to a 5‐coloring of all of G. We present similar extension theorems for 6‐ and 7‐chromatic toroidal graphs, for 3‐colorable large‐width graphs embedded on Sg with every face even‐sided, and for 4‐colorable large‐width Eulerian triangulations. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 105–116, 2001  相似文献   

12.
13.
一个地图的每条边,若在同一面的边界上,则称它为奇异地图.由于含环的地图是不可着色的,本文所有地图均不含环.本文研究射影平面和环面上带根奇异地图的色和.  相似文献   

14.
We prove a decomposition theorem for the class of triangle‐free graphs that do not contain a subdivision of the complete graph on four vertices as an induced subgraph. We prove that every graph of girth at least five in this class is 3‐colorable.  相似文献   

15.
A graph G is (k,0)‐colorable if its vertices can be partitioned into subsets V1 and V2 such that in G[V1] every vertex has degree at most k, while G[V2] is edgeless. For every integer k?0, we prove that every graph with the maximum average degree smaller than (3k+4)/(k+2) is (k,0)‐colorable. In particular, it follows that every planar graph with girth at least 7 is (8, 0)‐colorable. On the other hand, we construct planar graphs with girth 6 that are not (k,0)‐colorable for arbitrarily large k. © 2009 Wiley Periodicals, Inc. J Graph Theory 65:83–93, 2010  相似文献   

16.
Map the vertices of a graph to (not necessarily distinct) points of the plane so that two adjacent vertices are mapped at least unit distance apart. The plane‐width of a graph is the minimum diameter of the image of its vertex set over all such mappings. We establish a relation between the plane‐width of a graph and its chromatic number. We also connect it to other well‐known areas, including the circular chromatic number and the problem of packing unit discs in the plane. © 2011 Wiley Periodicals, Inc. J Graph Theory 68: 229‐245, 2011  相似文献   

17.
The second author's (B.A.R.) ω, Δ, χ conjecture proposes that every graph satisfies . In this article, we prove that the conjecture holds for all claw‐free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way, we discuss a stronger local conjecture, and prove that it holds for claw‐free graphs with a three‐colorable complement. To prove our results, we introduce a very useful χ‐preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so‐called skeletal graphs.  相似文献   

18.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

19.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L = {L(v): v: ∈ V}, there exists a proper acyclic coloring ? of G such that ?(v) ∈ L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L (v)|≥ k for all vV, then G is acyclically k‐choosable. In this article, we prove that every planar graph G without 4‐ and 5‐cycles, or without 4‐ and 6‐cycles is acyclically 5‐choosable. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 245–260, 2007  相似文献   

20.
A map is singular if each edge is on the same face on a sruface (i.e., those have only one face on a surface). Because any map with loop is not colorable, all maps here are assumed to be loopless. In this paper povides the explicit expression of chromatic sum functions for rooted singular maps on the projective plane, the torus and the Klein bottle. From the explicit expression of chromatic sum functions of such maps, the explicit expression of enum erating functions of such maps are also derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号