首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It would be convenient to have a model, albeit approximate, of particle-laden materials (suspensions) that would not need large amounts of computing and/or experimentation to implement for design purposes. There are now adequate models of the pure matrix fluid behaviour, but there are no such models for suspensions with large particles (non-colloidal suspensions). One of the obstacles has been the single-minded devotion to shearing motions of suspensions; experience with the matrix modelling has shown that it is not possible to formulate widely usable models if only shear is considered. Here some new results of axially symmetric elongational tests on suspensions are compared with shearing data. Some suggestions for modelling these and other observations based on using strain rate and strain in a modified Reiner-Rivlin constitutive equation are presented. The model generally works quite well, but it does not predict the positive storage modulus seen in small and medium amplitude oscillatory shear flows.  相似文献   

2.
The role of friction in non-colloidal suspensions is examined with a model which splits the viscosity into a frictionless component (τ*) plus a frictional component which depends on the ratio of the particle pressure (P) to the shear stress (τ). The model needs the input by computation of τ* and P and a suitable choice of particle friction coefficient (μ). It can be extended to elongational flows and cases where sphere roughness is important; volume fractions up to 0.5 are considered. It is shown that friction acts in a feedback or “bootstrap” manner to increase the suspension viscosity. The analysis is also useful for deducing the friction coefficient in suspensions from experimental data. It was applied to several sets of experimental data and reasonable correlations of the viscosities were demonstrated. An example of the correlation for spheres in a silicone oil is shown for volume fractions 0.1–0.5.
Graphical abstract
  相似文献   

3.
The melt rheology of a commercially available tetrafluoroethylene/hexafluoropropylene copolymer, which is known as Teflon FEP copolymer, was studied to examine the effect of pre-thermal history during sample preparation conditions on dynamic shear and uniaxial elongational measurements. The first experimental series includes the sample preparation under hot press at 320 °C followed by a rapid cooling. The master curves were successfully obtained at 300 °C from the time-temperature superposition principle. The loss modulus G″ was found to be proportional to the angular frequency in a double-logarithmic plot toward 0.01 (rad/s), while the slope of the storage modulus G′ did not become 2. The elongational viscosity as a function of time under constant strain rates showed weak strain-hardening, which was enhanced with larger strain rates. The second experimental series contain three kinds of samples with different pre-thermal history to control rheological properties. All samples were hot-pressed at 320 °C followed by a rapid cooling to room temperature for the sample A and a slow cooling for the sample B and C. The dynamic shear and elongational measurements were performed at 270 °C for all samples, which were heated from room temperature for the sample A and B, but heated up to 280 °C and cooled down to 270 °C for the sample C. The distance between G″ and G′ become narrower in the order of the sample C, B, and A. In the same order, unexpectedly, the strain-hardening in the elongational viscosity measurements became the strain-softening. These unusual properties were discussed from a residual crystallinity.  相似文献   

4.
Uniaxial elongational viscosity of SiO2/(acrylic polymer/epoxy (AP/EP)) suspensions with various SiO2 volume fractions (?) in a blend of acrylic polymer and epoxy was investigated at various temperatures (T). The matrix polymer ((AP/EP) blend) contained 70?vol.% of EP. At ?????35?vol.% at T????80°C, where the suspensions were in sol state, strain-hardening behavior was observed. This strain hardening of the suspensions is attributable to the elongational flow properties of (AP/EP) medium. At critical gel state (??=?35?vol.% and T?=?100°C) and in gel state (?????40?vol.%), the elongational viscosity exhibited the strain-softening behavior. These results strongly suggest that the strain softening results from the strain-induced disruption of the network structure of the SiO2 particles therein.  相似文献   

5.
Numerical simulations have been undertaken for the creeping entry flow of a well-characterized polymer melt (IUPAC-LDPE) in a 4:1 axisymmetric and a 14:1 planar contraction. The fluid has been modeled using an integral constitutive equation of the K-BKZ type with a spectrum of relaxation times (Papanastasiou–Scriven–Macosko or PSM model). Numerical values for the constants appearing in the equation have been obtained from fitting shear viscosity and normal stress data as measured in shear and elongational data from uniaxial elongation experiments. The numerical solutions show that in the axisymmetric contraction the vortex in the reservoir first increases with increasing flow rate (or apparent shear rate), goes through a maximum and then decreases following the behavior of the uniaxial elongational viscosity. For the planar contraction, the vortex diminishes monotonically with increasing flow rate following the planar extensional viscosity. This kinematic behavior is not in agreement with recent experiments. The PSM strain-memory function of the model is then modified to account for strain-hardening in planar extension. Then the vortex pattern shows an increase in both axisymmetric and planar flows. The results for planar flow are compared with recent experiments showing the correct trend.  相似文献   

6.
Rheological behavior of concentrated suspensions of chemical vapor deposition carbon nanotubes in uniaxial elongation and simple shear is studied experimentally and theoretically. Nanotubes are suspended in viscous host liquids—castor oil or its blends with n-decane. The elongational measurements are performed by analyzing self-thinning (due to surface tension effect) liquid threads of nanotube suspensions. A quasi-one-dimensional model is used to describe the self-thinning process, whereas corrections accounting for thread nonuniformity and necking are introduced a posteriori. The effects of nanotube concentration and aspect ratio, viscosity of the suspending liquid, and initial diameter of the self-thinning thread in uniaxial elongation are elucidated. The results for uniaxial elongation are compared with those for simple shear. The correspondence in the results of the shear and elongational measurements is addressed and interpreted. The results conform to the Herschel–Bulkley rheological constitutive equation (i.e., power law fluids with yield stress). However, the yield stress in elongation is about 40% higher than in simple shear flow, which suggests that the original Herschel–Bulkley model need modification with the yield stress being a function of the second invariant of the deviatoric stress tensor. The present effort is the first to study capillary self-thinning of Herschel–Bulkley liquids, which are exemplified here by suspensions of carbon nanotubes.  相似文献   

7.
 We investigate the variations in the shear stress and the first and second normal stress differences of suspensions formulated with viscoelastic fluids as the suspending medium. The test materials comprise two different silicone oils for the matrix fluids and glass spheres of two different mean diameters spanning a range of volume fractions between 5 and 25%. In agreement with previous investigations, the shear stress–shear rate functions of the viscoelastic suspensions were found to be of the same form as the viscometric functions of their matrix fluids, but progressively shifted along the shear rate axis to lower shear rates with increasing solid fraction. The normal stress differences in all of the suspensions examined can be conveniently represented as functions of the shear stress in the fluid. When plotted in this form, the first normal stress difference, as measured with a cone and plate rheometer, is positive in magnitude but strongly decreases with increasing solid fraction. The contributions of the first and the second normal stress differences are separated by using normal force measurements with parallel plate fixtures in conjunction with the cone-and-plate observations. In this way it is possible for the first time to quantify successfully the variations in the second normal stress difference of viscoelastic suspensions for solid fractions of up to 25 vol.%. In contrast to measurements of the first normal stress difference, the second normal stress difference is negative with a magnitude that increases with increasing solid content. The changes in the first and second normal stress differences are also strongly correlated to each other: The relative increase in the second normal stress difference is equal to the relative decrease of the first normal stress difference at the same solid fraction. The variations of the first as well as of the second normal stress difference are represented by power law functions of the shear stress with an unique power law exponent that is independent of the solid fraction. The well known edge effects that arise in cone-and-plate as well as parallel-plate rheometry and limit the accessible measuring range in highly viscoelastic materials to low shear rates could be partially suppressed by utilizing a custom- designed guard-ring arrangement. A procedure to correct the guard-ring influence on torque and normal force measurements is also presented. Received: 20 December 2000 Accepted: 7 May 2001  相似文献   

8.
The viscosity behavior in electric fields was measured for dilute suspensions of p-[perfluoro(2-isopropyl-1,3-dimethyl-1-butenyl)oxy]benzoic acid particles (PFNA) in silicone oils. The application of electric fields causes a viscosity increase in a wide range of shear rates. Since the electrorheological (ER) effect is much stronger at low shear rates, the flow becomes shear-thinning. However, contrary to conventional ER suspensions which are reversibly converted between Newtonian fluids and Bingham solids, the PFNA suspensions are fluids even in electric fields. When the particle concentration is increased to 5 wt.%, the ER effect reaches saturation. Further increase does not contribute to additional viscosity enhancement. These results cannot be explained through the chain formation mechanism established for conventional systems. After the ER experiments, the bob surface of the rheometer is covered with several stripes of aggregated particles. Although the strength of electric and shear fields is constant in the rheometer, the periodic structure may be formed in the flow of electrified suspensions. When a dielectric liquid is subjected to high electric fields, the secondary motion of liquid can be induced by the Coulomb force acting on free charge. The electrohydrodynamic (EHD) convection is responsible for the periodic distribution of particles concentration. The ER effect of PFNA suspensions may be generated by a combined effect of EHD convection and external shear.  相似文献   

9.
We present a model for the shear viscosity of non-colloidal suspensions with Newtonian matrix fluids. The model is based on the original idea first presented by Brinkman (Applied Sci Research A1:27-34. 1947) for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles. In particular, we consider an inertialess suspension in which the mean flow is driven by a pressure difference, and simultaneously, the suspension is subject to simple shear. Assuming steady state, incompressibility and taking into account a resistance force which is generated due to the presence of the particles in the flow, the three-dimensional governing equations for the mean flow around a single spherical particle are solved analytically. Self-consistency of the model provides a relationship between the resistance parameter and the volume fraction of the solid phase. A volume, or an ensemble, averaging of the total stress gives the bulk properties and an expression for the relative (bulk) viscosity of the suspension. The viscosity expression reduces to the Einstein limit for dilute suspensions and agrees well with empirical formulas from the literature in the semi-dilute and concentrated regimes. Since the model is based on a single particle and its average interaction with the other particles is isotropic, no normal stress differences can be predicted. A possible method of addressing this problem is provided in the paper.  相似文献   

10.
Summary The steady shear flow properties of suspensions of vinylon fibers in silicone oil were measured by means of a cone-plate type rheometer. Three kinds of vinylon fibers used had no distributions of length and were more flexible than glass fibers and the like. The content of the fibers ranged from 0 to 7 wt.%. Shear viscosity, the first normal-stress difference, yield stress, and relative viscosity were discussed. Shear viscosity and relative viscosity increased with the fiber concentration and the aspect ratio, and depended upon the shear rate. The applicability of Ziegel's equation of viscosity for fiber suspensions was investigated. The first normal-stress difference increased with the fiber concentration, aspect ratio, and shear rate and its relative increase was much larger than for shear stress and viscosity depending on the properties of the characteristic time, The yield stress could be determined by Casson plots for large aspect ratio fiber suspensions even in low concentration comparing with the suspensions of spherical particles or powder. The influence of the flexibility of the fibers for the rheological properties of the fiber suspensions can not be ignored.With 12 figures and 2 tables  相似文献   

11.
The rheological properties and flow instability are studied for binary blends composed of a long-chain branched polyethylene and a linear polyethylene. It is found that the blends containing a linear-polyethylene with high shear viscosity exhibit higher oscillatory moduli, drawdown force, and strain-hardening behavior. The blends showing the anomalous rheological phenomena show sharkskin failure in low shear rate region as compared with a pure linear polyethylene. Moreover, the blends exhibit severe gross melt fracture at low output rate. Enhanced strain-hardening in elongational viscosity and large entrance angle at a die entry will be responsible for the severe gross melt fracture for the blends.  相似文献   

12.
We have studied the dynamics of non-colloidal short fiber suspensions in bounded shear flow using the Stokesian dynamics simulation. Such particles make up the microstructure of many suspensions for which the macroscopic dynamics are not well understood. The effect of wall on the fiber dynamics is the main focus of this work. For a single fiber undergoing simple shear flow between plane parallel walls the period of rotation was compared with the Jeffrey’s orbit. A fiber placed close to the wall shows significant deviation from Jeffrey’s orbit. The fiber moving near a solid wall in bounded shear flow follows a pole-vaulting motion, and its centroid location from the wall is also periodic. Simulations were also carried out to study the effect of fiber–fiber interactions on the viscosity of concentrated suspensions.  相似文献   

13.
Flows involving different types of chain branches have been modelled as functions of the uniaxial elongation using the recently generated constitutive model and molecular dynamics for linear viscoelasticity of polymers. Previously control theory was applied to model the relationship between the relaxation modulus, dynamic and shear viscosity, transient flow effects, power law and Cox–Merz rule related to the molecular weight distribution (MWD) by melt calibration. Temperature dependences and dimensions of statistical chain tubes were also modelled. The present study investigated the elongational viscosity. We introduced earlier the rheologically effective distribution (RED), which relates very accurately and linearly to the viscoelastic properties. The newly introduced effective strain-hardening distribution (REDH) is related to long-chain branching. This REDH is converted to real long-chain branching distribution by melt calibration and a simple relation formula. The presented procedure is very effective at characterizing long-chain branches, and also provides information on their structure and distribution. Accurate simulations of the elongational viscosities of low-density polyethylene, linear low-density polyethylene and polypropylene, and new types of MWDs are presented. Models are presented for strain-hardening that includes the monotonic increase and overshoot effects. Since the correct behaviour at large Hencky strains is still unclear, these theoretical models may aid further research and measurements.  相似文献   

14.
Mixtures of xanthan and guar gum in aqueous solution were studied in two flow situations: simple shear and porous media. In addition, solids transport in vertical annular flow of sand suspensions was explored. The zero shear rate viscosity of the solutions displayed a pronounced synergy: the viscosity of the mixture is higher than that of the polymer solutions in a wide range of relative concentrations of the two polymers, in agreement with previous literature. However, at relatively high shear rates, the viscosity approaches the value of the more viscous xanthan gum solutions at mass fractions of xanthan gum between 0.1 and 0.15, and the degree of synergy substantially decreases. Stress relaxation experiments in simple shear indicate that the polymer mixtures exhibit a well-defined yield stress after relaxation that is absent in solutions of pure polymers. In porous media flow experiments, a synergistic behavior mimicking the shear flow results was obtained for the polymer mixtures at low shear rates. However, at a critical shear rate, the apparent viscosity in porous media flows exceeds the shear viscosity due to the elongational nature of flow in the pores. The solids transport capacity in annular flows is well-represented by trends in shear viscosity and stress relaxation behavior. However, the lack of viscosity synergy at high shear rates limits the applicability of the mixtures as a way to improve solids suspension capacity in annular flows.  相似文献   

15.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

16.
A smoothed particle hydrodynamics approach is utilized to model a non-Newtonian fluid with a spatially varying viscosity. In the limit of constant viscosity, this approach recovers an earlier model for Newtonian fluids of Español and Revenga (Phys Rev E 67:026705, 2003). Results are compared with numerical solutions of the general Navier–Strokes equation using the “regularized” Bingham model of Papanastasiou (J Rheol 31:385–404, 1987) that has a shear-rate-dependent viscosity. As an application of this model, the effect of having a non-Newtonian fluid matrix, with a shear-rate-dependent viscosity in a moderately dense suspension, is examined. Simulation results are then compared with experiments on mono-size silica spheres in a shear-thinning fluid and for sand in a calcium carbonate paste. Excellent agreement is found between simulation and experiment. These results indicate that measurements of the shear viscosity of simple shear-rate-dependent non-Newtonian fluids may be used in simulation to predict the viscosity of concentrated suspensions having the same matrix fluid.  相似文献   

17.
用 HAAKE RV2 0型流变仪 ,在不同外加电场强度和不同颗粒体积分数下测试了基于沸石和硅油的电流变液的剪切应力变化 .结果表明 :随着外加电场强度升高 ,电流变液的零电场粘度急剧增加 ,电流变液的剪切屈服应力增加 ;随着电流变液中沸石颗粒体积分数升高 ,电流变液的剪切屈服强度急剧上升 .这种变化可以用颗粒间作用力与颗粒间距的关系、单位面积的颗粒链数目变化以及多体作用对电流变液性能的影响来解释  相似文献   

18.
We study the effect of fiber additives on rheology and sedimentation of particle suspensions in a base viscoelastic suspending fluid in the case when the suspension is subjected to shear flow. We found experimentally that fiber additives (3–6 mm in length and 8–12 μm in diameter at a mass fraction of 0–0.4%) increase the suspension viscosity and retard the particle sedimentation significantly. At the same mass concentration, long and thin fibers reduce the sedimentation velocity and increase the viscosity to a much greater extent than short and thick fibers. We revealed that both rheology and sedimentation are controlled by a single conformational parameter (overlap parameter) defined as the number of fibers per unit volume multiplied by fiber length cubed.  相似文献   

19.
Multimodal suspensions, consisting of non-colloidal spherical particles and a Newtonian matrix, are considered. A new differential (or multi-scale mean field approach) model for the relative viscosity of multimodal suspensions has been developed. The problem of the random close packing fraction of the solid phase is also investigated. We suppose that the multimodal suspension has a dominant large particle composition and that the smaller particles are embedded in the empty space between the larger particles. The relative viscosity model can therefore be based on the theory of monomodal suspensions. Experimental data of Eveson are compared to the predictions given by using three different models of monomodal suspensions respectively. The Maron–Pierce approach appears to give the best agreement with Eveson’s experiments. However, due to experimental uncertainties, we recommend that the Mendoza and Santamaria-Holek (MSH) formula be adopted.  相似文献   

20.
Particle-level simulation has been employed to investigate rheology and microstructure of non-spherical particulate suspensions in a simple shear flow. Non-spherical particles in Newtonian fluids are modeled as three-dimensional clusters of neutrally buoyant, non-Brownian spheres linked together by Hookean-type constraint force. Rotne–Prager correction to velocity disturbance has been employed to account for far-field hydrodynamic interactions. An isolated rod-like particle in simple shear flow exhibits a periodic orientation distribution, commonly referred to as Jeffery orbit. Lubrication-like repulsive potential between clusters have been included in simulation of rod-like suspensions at various aspect ratios over dilute to semi-dilute volume fractions. Shear viscosity evaluated by orientation distribution qualitatively agrees with one obtained by direct computation of shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号