首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the fourth‐order compact finite difference (4cFD) discretizations for the long time dynamics of the nonlinear Klein–Gordon equation (NKGE), while the nonlinearity strength is characterized by ?p with a constant p ∈ ?+ and a dimensionless parameter ? ∈ (0, 1] . Based on analytical results of the life‐span of the solution, rigorous error bounds of the 4cFD methods are carried out up to the time at O(??p) . We pay particular attention to how error bounds depend explicitly on the mesh size h and time step τ as well as the small parameter ? ∈ (0, 1] , which indicate that, in order to obtain ‘correct’ numerical solutions up to the time at O(??p) , the ? ‐scalability (or meshing strategy requirement) of the 4cFD methods should be taken as: h = O(?p/4) and τ = O(?p/2) . It has better spatial resolution capacity than the classical second order central difference methods. By a rescaling in time, it is equivalent to an oscillatory NKGE whose solution propagates waves with wavelength at O(1) in space and O(?p) in time. It is straightforward to get the error bounds of the oscillatory NKGE in the fixed time. Finally, numerical results are provided to confirm our theoretical analysis.  相似文献   

2.
In this article, a high‐order finite difference scheme for a kind of nonlinear fractional Klein–Gordon equation is derived. The time fractional derivative is described in the Caputo sense. The solvability of the difference system is discussed by the Leray–Schauder fixed point theorem, while the stability and L convergence of the finite difference scheme are proved by the energy method. Numerical examples are provided to demonstrate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 706–722, 2015  相似文献   

3.
This research gives a complete Lie group classification of the one‐dimensional nonlinear delay Klein–Gordon equation. First, the determining equations are derived and their complete solutions are found. Then the complete group classification and representations of all invariant solutions are obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the meshless local Petrov–Galerkin approximation is proposed to solve the 2‐D nonlinear Klein–Gordon equation. We used the moving Kriging interpolation instead of the MLS approximation to construct the meshless local Petrov–Galerkin shape functions. These shape functions possess the Kronecker delta function property. The Heaviside step function is used as a test function over the local sub‐domains. Here, no mesh is needed neither for integration of the local weak form nor for construction of the shape functions. So the present method is a truly meshless method. We employ a time‐stepping method to deal with the time derivative and a predictor–corrector scheme to eliminate the nonlinearity. Several examples are performed and compared with analytical solutions and with the results reported in the extant literature to illustrate the accuracy and efficiency of the presented method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A usual way of approximating Hamilton–Jacobi equations is to couple space finite element discretization with time finite difference discretization. This classical approach leads to a severe restriction on the time step size for the scheme to be monotone. In this paper, we couple the finite element method with the nonstandard finite difference method, which is based on Mickens' rule of nonlocal approximation. The scheme obtained in this way is unconditionally monotone. The convergence of the new method is discussed and numerical results that support the theory are provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, a compact finite difference method is developed for the periodic initial value problem of the N‐coupled nonlinear Klein–Gordon equations. The present scheme is proved to preserve the total energy in the discrete sense. Due to the difficulty in obtaining the priori estimate from the discrete energy conservation law, the cut‐off function technique is employed to prove the convergence, which shows the new scheme possesses second order accuracy in time and fourth order accuracy in space, respectively. Additionally, several numerical results are reported to confirm our theoretical analysis. Lastly, we apply the reliable method to simulate and study the collisions of solitary waves numerically.  相似文献   

7.
The group analysis method is applied to the two‐dimensional nonlinear Klein–Gordon equation with time‐varying delay. Determining equations for equations with a time‐varying delay are derived. A complete group classification of the studied equation with respect to the function involved into the equation is obtained. All admitted Lie algebras are classified. By using the classifications, representations of all invariant solutions are found. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, we employ the complex method to obtain all meromorphic exact solutions of complex Klein–Gordon (KG) equation, modified Korteweg‐de Vries (mKdV) equation, and the generalized Boussinesq (gB) equation at first, then find all exact solutions of the Equations KG, mKdV, and gB. The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic solutions are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions w2r,2(z) and simply periodic solutions w1s,2(z),w2s,1(z) in these equations such that they are not only new but also not degenerated successively by the elliptic function solutions. We have also given some computer simulations to illustrate our main results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a nonperiodic discrete nonlinear equation with Jacobi operators is considered. By using the critical point theory, we establish some new sufficient conditions on the existence and multiplicity of homoclinic solutions. Recent results are generalized and significantly improved. Furthermore, our results greatly improve some existing ones even for some special cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a shifted Jacobi–Gauss collocation spectral algorithm is developed for solving numerically systems of high‐order linear retarded and advanced differential–difference equations with variable coefficients subject to mixed initial conditions. The spatial collocation approximation is based upon the use of shifted Jacobi–Gauss interpolation nodes as collocation nodes. The system of differential–difference equations is reduced to a system of algebraic equations in the unknown expansion coefficients of the sought‐for spectral approximations. The convergence is discussed graphically. The proposed method has an exponential convergence rate. The validity and effectiveness of the method are demonstrated by solving several numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations and finite difference method (FDM). The proposed method reduces LFKGE to a system of ODEs, which is solved using FDM. Special attention is given to study the convergence analysis and deduce an error upper bound of the proposed method. Numerical example is given to show the validity and the accuracy of the proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We introduce a new class of discrete Bessel functions and discrete modified Bessel functions of integer order. After obtaining some of their basic properties, we show that these functions lead to fundamental solutions of the discrete wave equation and discrete diffusion equation.  相似文献   

13.
In this work, we consider coupled nonlinear Klein–Gordon equations with nonlinear damping terms, in a bounded domain. The decay estimates of the solution are established by using Nakao's inequality. We also prove the blow up of the solution in finite time with negative initial energy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
By using Nevanlinna theory, we generalize a result given by Wittich to complex differential‐difference equations. The result obtained is that the differential‐difference equation in f which is of only one dominant term, has no admissible meromorphic solution f with hyper‐order less than 1 provided N(r,f) = S(r,f).  相似文献   

15.
In this paper, an efficient numerical procedure for the generalized nonlinear time‐fractional Klein–Gordon equation is presented. We make use of the typical finite difference schemes to approximate the Caputo time‐fractional derivative, while the spatial derivatives are discretized by means of the cubic trigonometric B‐splines. Stability and convergence analysis for the numerical scheme are discussed. We apply our scheme to some typical examples and compare the obtained results with the ones found by other numerical methods. The comparison shows that our scheme is quite accurate and can be applied successfully to a variety of problems of applied nature.  相似文献   

16.
In this article, a conservative compact difference scheme is presented for the periodic initial‐value problem of Klein–Gordon–Schrödinger equation. On the basis of some inequalities about norms and the priori estimates, convergence of the difference solution is proved with order O(h42) in maximum norm. Numerical experiments demonstrate the accuracy and efficiency of the compact scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
We prove the existence of the wave operator for the system of the massive Dirac–Klein–Gordon equations in three space dimensions x∈ R 3 where the masses m, M>0. We prove that for the small final data , (?, ?)∈ H 2 + µ, 1 × H 1 + µ, 1, with and , there exists a unique global solution for system (1) with the final state conditions Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, a new generalized Jacobi elliptic functions expansion method based upon four new Jacobi elliptic functions is described and abundant new Jacobi-like elliptic functions solutions for the variable-coefficient mKdV equation are obtained by using this method, some of these solutions are degenerated to solitary-like solutions and triangular-like functions solutions in the limit cases when the modulus of the Jacobi elliptic functions m→1 or 0, which shows that the new method can be also used to solve other nonlinear partial differential equations in mathematical physics.  相似文献   

19.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Solvability of Cauchy's problem in for fractional Hamilton–Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号