首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the numerical solution of elliptic boundary value problems in domains with random boundary perturbations. Assuming normal perturbations with small amplitude and known mean field and two-point correlation function, we derive, using a second order shape calculus, deterministic equations for the mean field and the two-point correlation function of the random solution for a model Dirichlet problem which are 3rd order accurate in the boundary perturbation size. Using a variational boundary integral equation formulation on the unperturbed, “nominal” boundary and a wavelet discretization, we present and analyze an algorithm to approximate the random solution’s mean and its two-point correlation function at essentially optimal order in essentially work and memory, where N denotes the number of unknowns required for consistent discretization of the boundary of the nominal domain. This work was supported by the EEC Human Potential Programme under contract HPRN-CT-2002-00286, “Breaking Complexity.” Work initiated while HH visited the Seminar for Applied Mathematics at ETH Zürich in the Wintersemester 2005/06 and completed during the summer programme CEMRACS2006 “Modélisation de l’aléatoire et propagation d’incertitudes” in July and August 2006 at the C.I.R.M., Marseille, France.  相似文献   

2.
The level‐set formulation of motion by mean curvature is a degenerate parabolic equation. We show that its solution can be interpreted as the value function of a deterministic two‐person game. More precisely, we give a family of discrete‐time, two‐person games whose value functions converge in the continuous‐time limit to the solution of the motion‐by‐curvature PDE. For a convex domain, the boundary's “first arrival time” solves a degenerate elliptic equation; this corresponds, in our game‐theoretic setting, to a minimum‐exit‐time problem. For a nonconvex domain the two‐person game still makes sense; we draw a connection between its minimum exit time and the evolution of curves with velocity equal to the “positive part of the curvature.” These results are unexpected, because the value function of a deterministic control problem is normally the solution of a first‐order Hamilton‐Jacobi equation. Our situation is different because the usual first‐order calculation is singular. © 2005 Wiley Periodicals, Inc.  相似文献   

3.
We establish the existence and uniqueness of a strong solution to the initial boundary value problem associated with the motion of a Bingham fluid in a two-dimensional domain with random noise. We also prove the existence of an invariant measure for a certain class of noise. When the deterministic forcing is sufficiently small and the multiplicative noise is almost linear, it is shown that extinction of a solution occurs in a finite time almost surely.  相似文献   

4.
In this paper we solve an initial‐boundary value problem that involves a pde with a nonlocal term. The problem comes from a cell division model where the growth is assumed to be stochastic. The deterministic version of this problem yields a first‐order pde; the stochastic version yields a second‐order parabolic pde. There are no general methods for solving such problems even for the simplest cases owing to the nonlocal term. Although a solution method was devised for the simplest version of the first‐order case, the analysis does not readily extend to the second‐order case. We develop a method for solving the second‐order case and obtain the exact solution in a form that allows us to study the long time asymptotic behaviour of solutions and the impact of the dispersion term. We establish the existence of a large time attracting solution towards which solutions converge exponentially in time. The dispersion term does not appear in the exponential rate of convergence.  相似文献   

5.
We study the homogenization of some Hamilton‐Jacobi‐Bellman equations with a vanishing second‐order term in a stationary ergodic random medium under the hyperbolic scaling of time and space. Imposing certain convexity, growth, and regularity assumptions on the Hamiltonian, we show the locally uniform convergence of solutions of such equations to the solution of a deterministic “effective” first‐order Hamilton‐Jacobi equation. The effective Hamiltonian is obtained from the original stochastic Hamiltonian by a minimax formula. Our homogenization results have a large‐deviations interpretation for a diffusion in a random environment. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
为分析边界条件不确定性对方腔内自然对流换热的影响,发展了一种求解随机边界条件下自然对流换热不确定性传播的Monte-Carlo随机有限元方法.通过对输入参数场随机边界条件进行Karhunen-Loeve展开及基于Latin(拉丁)抽样法生成边界条件随机样本,数值计算了不同边界条件随机样本下方腔内自然对流换热流场与温度场,并用采样统计方法计算了随机输出场的平均值与标准偏差.根据计算框架编写了求解随机边界条件下方腔内自然对流换热不确定性的MATLAB随机有限元程序,分析了随机边界条件相关长度与方差对自然对流不确定性的影响.结果表明:平均温度场及流场与确定性温度场及流场分布基本相同;随机边界条件下Nu数概率分布基本呈现正态分布,平均Nu数随着相关长度和方差增加而增大;方差对自然对流换热的影响强于相关长度的影响.  相似文献   

7.
Statistical properties of quantities obtained from measurements based on some fundamental physical laws are analyzed in this paper, using methods for expressing measurement uncertainty of indirectly measured quantities. Nonlinear laws are considered, with repeated measurements of input quantities providing identical readings on respective digital instruments. Under such conditions, input quantities are assigned uniform distributions. It is shown that in addition to the asymmetry arising in the probability density function (PDF) of the output quantity, its mean and nominal value also differ. Resistance obtained from Ohm’s law and power measured using three alternative forms of Joule’s law are investigated in detail. Some characteristic shapes of PDFs are obtained by a Monte Carlo method (MCM). It is demonstrated that the mean value of the measured resistance is greater than its nominal value. It is also proved that for two forms of Joule’s law the mean value of the measured power is larger than its nominal value, while the third variant of the law renders the mean and the nominal power equal. Analytical expressions for the deviations of mean from nominal values are derived. It is suggested that the presented analysis can readily be adapted to many other nonlinear physical laws.  相似文献   

8.
We show that a broad class of fully nonlinear, second‐order parabolic or elliptic PDEs can be realized as the Hamilton‐Jacobi‐Bellman equations of deterministic two‐person games. More precisely: given the PDE, we identify a deterministic, discrete‐time, two‐person game whose value function converges in the continuous‐time limit to the viscosity solution of the desired equation. Our game is, roughly speaking, a deterministic analogue of the stochastic representation recently introduced by Cheridito, Soner, Touzi, and Victoir. In the parabolic setting with no u‐dependence, it amounts to a semidiscrete numerical scheme whose timestep is a min‐max. Our result is interesting, because the usual control‐based interpretations of second‐order PDEs involve stochastic rather than deterministic control. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
The Stokes equation with the nonconstant viscosity is considered in a thin tube structure, i.e., in a connected union of thin rectangles with heights of order ε ≪ 1 and bases of order 1 with smoothened boundary. An asymptotic expansion of the solution is constructed. In the case of random perturbations of the constant viscosity, we prove that the leading term for the velocity is deterministic, while for the pressure it is random, but the expectations of the pressure satisfies the deterministic Darcy equation. Estimates for the difference between the exact solution and its asymptotic approximation are proved. Bibliography: 11 titles. Illustrations: 3 figures.  相似文献   

10.
In this article we study the convergence of the nonoverlapping domain decomposition for solving large linear system arising from semi‐discretization of two‐dimensional initial value problem with homogeneous boundary conditions and solved by implicit time stepping using first and two alternatives of second‐order FS‐methods. The interface values along the artificial boundary condition line are found using explicit forward Euler's method for the first‐order FS‐method, and for the second‐order FS‐method to use extrapolation procedure for each spatial variable individually. The solution by the nonoverlapping domain decomposition with FS‐method is applicable to problems that requires the solution on nonuniform meshes for each spatial variable, which will enable us to use different time‐stepping over different subdomains and with the possibility of extension to three‐dimensional problem. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 609–624, 2002  相似文献   

11.
We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. Domains are bounded, and have finite fluctuations. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is “spectral” in the polynomial chaos order, in any subdomain which does not contain the random boundaries.  相似文献   

12.
In this article, we propose an iterative method based on the equation decomposition technique ( 1 ) for the numerical solution of a singular perturbation problem of fourth‐order elliptic equation. At each step of the given method, we only need to solve a boundary value problem of second‐order elliptic equation and a second‐order singular perturbation problem. We prove that our approximate solution converges to the exact solution when the domain is a disc. Our numerical examples show the efficiency and accuracy of our method. Our iterative method works very well for singular perturbation problems, that is, the case of 0 < ε ? 1, and the convergence rate is very fast. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

13.
The numerical solution of the heat equation on a strip in two dimensions is considered. An artificial boundary is introduced to make the computational domain finite. On the artificial boundary, an exact boundary condition is proposed to reduce the original problem to an initial‐boundary value problem in a finite computational domain. A difference scheme is constructed by the method of reduction of order to solve the problem in the finite computational domain. It is proved that the difference scheme is uniquely solvable, unconditionally stable and convergent with the convergence order 2 in space and order 3/2 in time in an energy norm. A numerical example demonstrates the theoretical results.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

14.
In this article a numerical method for solving a two‐dimensional transport equation in the stationary case is presented. Using the techniques of the variational calculus, we find the approximate solution for a homogeneous boundary‐value problem that corresponds to a square domain D2. Then, using the method of the fictitious domain, we extend our algorithm to a boundary value problem for a set D that has an arbitrary shape. In this approach, the initial computation domain D (called physical domain) is immersed in a square domain D2. We prove that the solution obtained by this method is a good approximation of the exact solution. The theoretical results are verified with the help of a numerical example. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The biharmonic Dirichlet boundary value problem on a bounded domain is the focus of the present paper. By Riesz' representation theorem the existence and uniqueness of a weak solution is quite direct. The problem that we are interested in appears when one is looking for constructive approximations of a solution. Numerical methods using for example finite elements, prefer systems of second equations to fourth order problems. Ciarlet and Raviart in 7 and Monk in 21 consider approaches through second order problems assuming that the domain is smooth. We will discuss what happens when the domain has corners. Moreover, we will suggest a setting, which is in some sense between Ciarlet‐Raviart and Monk, that inherits the benefits of both settings and that will give the weak solution through a system type approach.  相似文献   

17.
The paper deals with a class of random variational inequalities and simple random elliptic boundary value problems with unilateral conditions. Here randomness enters in the coefficient of the elliptic operator and in the right hand side of the p.d.e. In addition to existence and uniqueness results a theory of combined probabilistic deterministic discretization is developped that includes nonconforming approxima¬tion of unilateral constraints. Without any regularity assumptions on the solution, norm convergence of the full approximation process is established. The theory is applied to a Helmholtz like elliptic equation with Signorini boundary conditions as a simple model problem, where Galerkin discretization is realized by finite element approximation  相似文献   

18.
Piecewise deterministic Markov processes (PDPs) are continuous time homogeneous Markov processes whose trajectories are solutions of ordinary differential equations with random jumps between the different integral curves. Both continuous deterministic motion and the random jumps of the processes are controlled in order to minimize the expected value of a performance criterion involving discounted running and boundary costs. Under fairly general assumptions, we will show that there exists an optimal control, that the value function is Lipschitz continuous and that a generalized Bellman-Hamilton-Jacobi (BHJ) equation involving the Clarke generalized gradient is a necessary and sufficient optimality condition for the problem.  相似文献   

19.
By the method of boundary integral equations, we construct a classical solution of the first initial–boundary value problem for a one-dimensional (with respect to x) parabolic system in a domain with nonsmooth lateral boundary for the case in which the right-hand sides of the boundary conditions only have continuous derivatives of order 1/2. We study the smoothness of the solution.  相似文献   

20.
Stochastic Dirichlet and Neumann boundary value problems and stochastic mixed problems have been formulated. As a result the stochastic singular integral equations have been obtained. A way of solving these equations by means of discretization of a boundary using stochastic boundary elements has been presented, resulting in a set of random algebraic equations. It has been proved that for Dirichlet and Neumann problems probabilistic characteristics (i.e. moments: expected value and correlation function) fulfilled deterministic singular integral equations. A numerical method of evaluation of moments on a boundary and inside a domain has been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号