首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Amplifier is at the heart of experiments carrying out the precise measurement of a weak signal. An idea quantum amplifier should have a large gain and minimum added noise simultaneously. Here, we consider the quantum measurement properties of the cavity with the OPA medium in the op-amp mode to amplify an input signal. We show that our nonlinear-cavity quantum amplifier has large gain in the single-value stable regime and achieves quantum limit unconditionally.  相似文献   

5.
We address two problems arising in the quantum measurement process: A rigorous definition of quasiclassical systems and its implications for the observed collapse of the wave function. For a mathematical definition of quasiclassical systems, we recall the structure of models for the classical world. They describe the dynamics of some simultaneously measurable quantities, thereby ignoring many properties of the modeled real world phenomena, especially all quantum mechanical ones. In this article, we define a quasiclassical system as a quantum system which allows such a simplified modelling. By classifying such quasiclassical systems, it is shown that they naturally correspond to classical systems in the usual sense. By describing quantum measurements with the aid of quasiclassical systems, we then observe an effect that is similar to decoherence: While the latter implies that off-diagonal entries of the density matrix vanish, in the former they correspond to the parts of the system that are not modeled and thus can be ignored. Especially, they do not influence any measurements of the properties contained in the classical model. Mathematically, this allows to treat the output of a quantum measurement as a classical probability distribution. Finally, we discuss some implications of this definition of quasiclassicality on the interpretation of quantum mechanics.  相似文献   

6.
In the hidden measurement formalism that we havedeveloped in Brussels we explain quantum structure asdue to the presence of two effects; (a) a real change ofstate of the system under influence of the measurement and (b) a lack of knowledge abouta deeper deterministic reality of the measurementprocess. We show that the presence of these two effectsleads to the major part of the quantum mechanical structure of a theory describing a physicalsystem, where the measurements to test the properties ofthis physical system contain the two mentioned effects.We present a quantum machine, with which we can illustrate in a simple way how the quantumstructure arises as a consequence of the two effects. Weintroduce a parameter that measures the amount of lackof knowledge on the measurement process, and by varying this parameter, we describe acontinuous evolution from a quantum structure (maximallack of knowledge) to a classical structure (zero lackof knowledge). We show that for intermediate values of we find a new type of structure that isneither quantum nor classical. We analyze the quantumparadoxes in the light of these findings and show thatthey can be divided into two groups: (1) The group(measurement problem and Schrodinger cat paradox) where theparadoxical aspects arise mainly from the application ofstandard quantum theory as a general theory (e.g., alsodescribing the measurement apparatus). This type of paradox disappears in the hiddenmeasurement formalism. (2) A second group collecting theparadoxes connected to the effect of nonlocality (theEinstein-Podolsky-Rosen paradox and the violation of Bell's inequalities). We show that theseparadoxes are internally resolved because the effect ofnonlocality turns out to be a fundamental property ofthe hidden-measurement formalism itself.  相似文献   

7.
We propose a scenario to increase the probability of probabilistic quantum deletion and to enhance the fidelity of approximate quantum deletion for two non-orthogonal states via weak measurement.More interestingly,by pretreating the given non-orthogonal states,the probability of probabilistic quantum deletion and fidelity of approximate quantum deletion can reach 1.Since outcomes of the weak measurement that we required are probabilistic,we perform the subsequent deleting process only when the o...  相似文献   

8.
We examine the statistical properties of a pure quantum state randomly chosen with respect to the uniform measure in a Hilbert space. Namely, we consider the distribution of outcomes of a fixed measurement performed on the random quantum state. We show that such distribution is completely analogous to the distribution of measurement outcomes of an a priori unknown classical random system. In particular, Shannon entropies of both distributions coincide. We study this correspondence between quantum and classical random systems and clarify its origin.  相似文献   

9.
We explain quantum structure as due to two effects: (a) a real change of state of the entity under the influence of the measurement and (b) a lack of knowledge about a deeper deterministic reality of the measurement process. We present a quantum machine, with which we can illustrate in a simple way how the quantum structure arises as a consequence of the two mentioned effects. We introduce a parameter that measures the size of the lack of knowledge of the measurement process, and by varying this parameter, we describe a continuous evolution from a quantum structure (maximal lack of knowledge) to a classical structure (zero lack of knowledge). We show that for intermediate values of we find a new type of structure that is neither quantum nor classical. We apply the model to situations of lack of knowledge about the measurement process appearing in other aspects of reality. Specifically, we investigate the quantumlike structures that appear in the situation of psychological decision processes, where the subject is influenced during the testing and forms some opinions during the testing process. Our conclusion is that in the light of this explanation, the quantum probabilities are epistemic and not ontological, which means that quantum mechanics is compatible with a determinism of the whole.  相似文献   

10.
We study a dissipative quantum mechanical model of the projective measurement of a qubit. We demonstrate how a correspondence limit, damped quantum oscillator can realise chaotic-like or periodic trajectories that emerge in sympathy with the projection of the qubit state, providing a model of the measurement process.  相似文献   

11.
We consider reversible quantum measurement process with ultracold trapped ions. Two schemes will be proposed based on currently available experimental techniques. We also study the measurement process with electronic shelving amplification.  相似文献   

12.
We propose a new approach to the measurement of a single spin state, based on nuclear magnetic resonance (NMR) techniques and inspired by the coherent control over many-body systems envisaged by quantum information processing. A single target spin is coupled via the magnetic dipolar interaction to a large ensemble of spins. Applying radio frequency pulses, we can control the evolution so that the spin ensemble reaches one of two orthogonal states whose collective properties differ depending on the state of the target spin and are easily measured. We first describe this measurement process using quantum gates; then we show how equivalent schemes can be defined in terms of the Hamiltonian and thus implemented under conditions of real control, using well established NMR techniques. We demonstrate this method with a proof of principle experiment in ensemble liquid state NMR and simulations for small spin systems.  相似文献   

13.
For the detection of gravitational waves the quantum mechanical properties of the detector have to be taken into account. Not all gravitational wave detectors allow a quantum nondemolition (QND) measurement. Continuous weak or fuzzy measurements are an alternative to study the evolution of a quantum mechanical system under the influence of an external field. In the present paper we investigate this alternative by applying it to a simplified system. We numerically simulate continuous fuzzy measurements of the oscillations of a two-level atom subjected to a resonant external light field. We thereby address the question whether it is possible to measure characteristic features of the evolution of a single quantum system in real time without relying on a QND scheme. We compare two schemes of continuous measurement: continuous measurement with constant fuzziness and with fuzziness changing in the course of the measurement. Because the sensitivity of the two-level atom to the influence of the measurement depends on the state of the atom, it is possible to optimize the continuous fuzzy measurement by varying its fuzziness.  相似文献   

14.
Linking quantum discord to entanglement in a measurement   总被引:1,自引:0,他引:1  
We show that a von Neumann measurement on a part of a composite quantum system unavoidably creates distillable entanglement between the measurement apparatus and the system if the state has nonzero quantum discord. The minimal distillable entanglement is equal to the one-way information deficit. The quantum discord is shown to be equal to the minimal partial distillable entanglement that is the part of entanglement which is lost, when we ignore the subsystem which is not measured. We then show that any entanglement measure corresponds to some measure of quantum correlations. This powerful correspondence also yields necessary properties for quantum correlations. We generalize the results to multipartite measurements on a part of the system and on the total system.  相似文献   

15.
We study the total quantum correlation, semiquantum correlation and joint quantum correlation induced by local von Neumann measurement in bipartite system. We analyze the properties of these quantum correlations and obtain analytical formula for pure states. The experimental witness for these quantum correlations is further provided and the significance of these quantum correlations is discussed in the context of local distinguishability of quantum states.  相似文献   

16.
In the foundations of quantum mechanics Gleason’s theorem dictates the uniqueness of the state transition probability via the inner product of the corresponding state vectors in Hilbert space, independent of which measurement context induces this transition. We argue that the state transition probability should not be regarded as a secondary concept which can be derived from the structure on the set of states and properties, but instead should be regarded as a primitive concept for which measurement context is crucial. Accordingly, we adopt an operational approach to quantum mechanics in which a physical entity is defined by the structure of its set of states, set of properties and the possible (measurement) contexts which can be applied to this entity. We put forward some elementary definitions to derive an operational theory from this State–COntext–Property (SCOP) formalism. We show that if the SCOP satisfies a Gleason-like condition, namely that the state transition probability is independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented, which is one of the ‘quantum axioms’ used in the Piron–Solèr representation theorem for quantum systems. In this sense we obtain a possible physical meaning for the orthocomplementation widely used in quantum structures.  相似文献   

17.
We present a quantum circuit that implements a nondemolition measurement of complementary single- and bipartite properties of a two-qubit system: entanglement and single-partite visibility and predictability. The system must be in a pure state with real coefficients in the computational basis, which allows a direct operational interpretation of those properties. The circuit can be realized in many systems of interest to quantum information.  相似文献   

18.
We introduce ways to measure information storage in quantum systems, using a recently introduced computation-theoretic model that accounts for measurement effects. The first, the quantum excess entropy, quantifies the shared information between a quantum process's past and its future. The second, the quantum transient information, determines the difficulty with which an observer comes to know the internal state of a quantum process through measurements. We contrast these with von Neumann entropy and quantum entropy rate and provide a closed-form expression for the latter for the class of deterministic quantum processes.  相似文献   

19.
A generalized Bloch sphere, in which the states of a quantum entity of arbitrary dimension are geometrically represented, is investigated and further extended, to also incorporate the measurements. This extended representation constitutes a general solution to the measurement problem, inasmuch it allows to derive the Born rule as an average over hidden-variables, describing not the state of the quantum entity, but its interaction with the measuring system. According to this modelization, a quantum measurement is to be understood, in general, as a tripartite process, formed by an initial deterministic decoherence-like process, a subsequent indeterministic collapse-like process, and a final deterministic purification-like process. We also show that quantum probabilities can be generally interpreted as the probabilities of a first-order non-classical theory, describing situations of maximal lack of knowledge regarding the process of actualization of potential interactions, during a measurement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号