首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究Birkhoff系统的一般Lie对称性导致的非Noether守恒量. 得到非Noether守恒 量的存在定理,举例说明结果的应用.  相似文献   

2.
利用子波分析对平壁湍流猝发现象的研究   总被引:7,自引:1,他引:7  
李栎  许春晓  张兆顺 《力学学报》2001,33(2):153-162
利用槽道湍流直接数值模拟的数据库,采用子波分析的方法。对平壁湍流猝发现象的多尺度特性进行了研究,在不同惊讶上对猝发平均周期进行了统计,并利用局部标度指数研究了猝发过程的奇异性。  相似文献   

3.
Cetyltrimethyl ammonium chloride (CTAC) surfactant additives, because of their long-life characteristics, can be used as promising drag-reducers in district heating and cooling systems. In the present study we performed both numerical and experimental tests for a 75 ppm CTAC surfactant drag-reducing channel flow. A two-component PIV system was used to measure the instantaneous streamwise and wall-normal velocity components. A Giesekus constitutive equation was adopted to model the extra stress due to the surfactant additives, with the constitutive parameters being determined by well-fitting apparent shear viscosities, as measured by an Advanced Rheometric Expansion System (ARES) rheometer. In the numerical study, we connected the realistic rheological properties with the drag-reduction rate. This is different from previous numerical studies in which the model parameters were set artificially. By performing consistent comparisons between numerical and experimental results, we have obtained an insight into the mechanism of the additive-induced drag-reduction phenomena.

Our simulation showed that the addition of surfactant additives introduces several changes in turbulent flow characteristics: (1) In the viscous sublayer, the mean velocity gradient becomes gentler due to the viscoelastic forces introduced by the additives. The buffer layer becomes expanded and the slope of the velocity profile in the logarithmic layer increases. (2) The locations where the streamwise velocity fluctuation and Reynolds shear stress attain their maximum value shifted from the wall region to the bulk flow region. (3) The root-mean-square velocity fluctuations in the wall-normal direction decrease for the drag-reducing flow. (4) The Reynolds shear stress decreases dramatically and the deficit of the Reynolds shear stress is mainly compensated by the viscoelastic shear stress. (5) The turbulent production becomes much smaller and its peak-value position moves toward the bulk flow region. All of these findings agree qualitatively with experimental measurements.

Regarding flow visualization, the violent streamwise vortices in the near wall region become dramatically suppressed, indicating that the additives weaken the ejection and sweeping motion, and thereby inhibit the generation of turbulence. The reduction in turbulence is accomplished by additive-introduced viscoelastic stress. Surfactant additives have dual effects on frictional drag: (1) introduce viscoelastic shear stress, which increases frictional drag; and (2) dampen the turbulent vortical structures, decrease the turbulent shear stress, and then decrease the frictional drag. Since the second effect is greater than the first one, drag-reduction occurs.  相似文献   


4.
A Reynolds-averaged simulation based on the vortex-in-cell (VIC) and the transport equation for the probability density function (PDF) of a scalar has been developed to predict the passive scalar field in a two-dimensional spatially growing mixing layer. The VIC computes the instantaneous velocity and vorticity fields. Then the mean-flow properties, i.e. the mean velocity, the root-mean-square (rms) longitudinal and lateral velocity fluctuations, the Reynolds shear stress, and the rms vorticity fluctuations are computed and used as input to the PDF equation. The PDF transport equation is solved using the Monte Carlo technique. The convection term uses the mean velocities from the VIC. The turbulent diffusion term is modeled using the gradient transport model, in which the eddy diffusivity, computed via the Boussinesq's postulate, uses the Reynolds shear stress and gradients of mean velocities from the VIC. The molecular mixing term is closed by the modified Curl model.

The computational results were compared with two-dimensional experimental results for passive scalar. The predicted turbulent flow characteristics, i.e. mean velocity and rms longitudinal fluctuations in the self-preserving region, show good agreement with the experimental measurements. The profiles of the mean scalar and the rms scalar fluctuations are also in reasonable agreement with the experimental measurements. Comparison between the mean scalar and the mean velocity profiles shows that the scalar mixing region extends further into the free stream than does the momentum mixing region, indicating enhanced transport of scalar over momentum. The rms scalar profiles exhibit an asymmetry relative to the concentration centerline, and indicate that the fluid on the high-speed side mixes at a faster rate than the fluid on the low-speed side. The asymmetry is due to the asymmetry in the mixing frequency cross-stream profiles. Also, the PDFs have peaks biased toward the high-speed side.  相似文献   

5.
This paper reports an experimental investigation on the flow characteristics upstream of a lifted turbulent diffusion flame in the presence of a coflow. Three fuel nozzles made of a long pipe with different outlet geometry were examined. One pair of these nozzles has the same orifice diameter but different normalized lip thickness, and another pair has the same normalized lip thickness but different orifice diameter. The strength of the co-airflow was also varied to assess its impact on the liftoff height of the jet diffusion flame. Previously published studies reported the existence of a hysteresis phenomenon in the liftoff height of a turbulent diffusion flame in the presence of a high co-airflow. That is, as the fuel velocity decreases, the lifted flame base would first move upstream (toward the burner) to a local minima followed by a downstream movement before its reattachment. The results of the present study, however, showed that such a phenomenon does not appear for a fuel pipe having a very small lip thickness. The present results also revealed that in the hysteresis region, the flame base sits where the turbulence intensity experiences its local maxima in the upcoming unburnt mixture. This corroborates the premixed stability theory which is based on turbulence intensity. Based on this, a correlation was found between the flame liftoff height in the hysteresis region and the fuel and co-airflow velocity at the nozzle exit. This relationship predicts successfully the liftoff height trend as a function of the fuel jet and co-airflow velocity and nozzle geometry. Away from the hysteresis region, however, the flame base location tends more toward the outside of the local turbulence intensity maxima. This indicates the limitations of the premixed stability theory in predicting the flame behavior in this region where the effect of the flow large-scale structures becomes important.  相似文献   

6.
An approximate solution for the laminar flow of an incompressible viscous fluid in the entrance region of a converging channel is obtained. The radial velocity distribution at the entrance of the channel is taken to be a symmetric but otherwise arbitrary function of the angular position. Expressions for the velocity components and pressure are given. The case of the uniformly distributed entrance velocity is considered as an example.  相似文献   

7.
旋转圆柱绕流流场特性分析   总被引:2,自引:2,他引:0  
徐一航  陈少松 《力学学报》2021,53(7):1900-1911
对雷诺数Re = 20000 ~ 90000、相对转速ɑ = 0 ~ 0.72的旋转圆柱后方流场进行了实验测量, 分析了旋转圆柱后方不同剖面处的速度分布规律和湍流度分布规律. 采用LES方法对旋转圆柱绕流问题进行了数值模拟, 分析旋转圆柱周围流场特性和自由剪切层变化规律, 最后通过理论模型对流场变化进行分析, 得出如下结论: 当圆柱逆时针旋转时, 同一雷诺数下随着相对转速的增加, 旋转圆柱尾迹区域下方速度突变处的位置随着相对转速的增加而上移, 而上方速度突变处的位置不变, 雷诺数的增加使旋转圆柱尾迹区域下方速度突变处位置有小幅度的下移. 通过数值模拟发现, 圆柱旋转之后, 圆柱后方下侧涡的位置明显上移, 且幅度较大. 下方的自由剪切层有明显的上移, 上方的自由剪切层位置变化较小. 最后通过理论分析发现, 圆柱后侧下方涡位置的上移对圆柱升力影响十分显著, 在高雷诺数、低相对转速的条件下, 旋转圆柱后侧下方涡位置的改变对旋转圆柱的升力、尾流区自由剪切层的变化起到了重要的影响.   相似文献   

8.
A study was made to see if it is possible to enhance the heat transfer in the downstream region of a backward-facing step, where heat transfer is normally deteriorated, by the insertion of a cylinder near the top corner of the step. Cylinder size and streamwise position of the cylinder were kept constant but the cross-stream position of the cylinder was changed in three steps. Results of the heat transfer experiment, flow visualization, and measurement of the averaged and fluctuating flow fields were reported. When the cylinder was mounted at a position, a little higher than the top surface of the step, a jet-like flow pattern emerged in the averaged velocity profile beneath the cylinder and the recirculating flow was intensified. Therefore, the velocity of recirculating flow near the wall is increased at some streamwise positions. Additionally, the velocity fluctuation was intensified not only in the shear layer between the jet-like flow and the recirculating flow regions but also in the near wall region, resulting in the effective augmentation of heat transfer in this case. Therefore, it is concluded that the mounting of a cylinder is effective in the enhancement of deteriorated heat transfer in the recirculating flow region, if its is mounted in a proper position.  相似文献   

9.
An Eulerian/Lagrangian numerical simulation is performed on mixed sand transport. Volume averaged Navier–Stokes equations are solved to calculate gas motion, and particle motion is calculated using Newton's equation, involving a hard sphere model to describe particle-to-particle and particle-to-wall collisions. The influence of wall characteristics, size distribution of sand particles and boundary layer depth on vertical distribution of sand mass flux and particle mean horizontal velocity is analyzed, suggesting that all these three factors affect sand transport at different levels. In all cases, for small size groups, sand mass flux first increases with height and then decreases while for large size groups, it decreases exponentially with height and for middle size groups the behavior is in-between. The mean horizontal velocity for all size groups well fits experimental data, that is, increasing logarithmically with height in the middle height region. Wall characteristics greatly affects particle to wall collision and makes the flat bed similar to a Gobi surface and the rough bed similar to a sandy surface. Particle size distribution largely affects the sand mass flux and the highest heights they can reach especially for larger particles.  相似文献   

10.
The distribution and motion of inertial particles in plane turbulent wall jet are investigated using direct numerical simulation, under the assumption of one-way coupling. To our knowledge, this appears to be the first direct numerical simulation of a particle-laden plane turbulent wall jet. It is shown that, in outer part of the wall jet, the behaviour of particles closely resembles that of a free plane jet. Due to the streamwise decay of particle Stokes number, the particle streaks formed in the near wall region of the wall jet are characterized by their intensity variation, which differs significantly from those in the channel flow. The streamwise growth of the particle velocity half-width is approximately equal to that of the fluid velocity half-width and the maximum velocity of particles decays slower than that of fluid due to inertia. The outer scaling can collapse the mean particle velocity in both the inner and outer region for heavier particles. In the buffer region, the particle–fluid velocity difference can be negative or positive depending on the Stokes number since there are two competing effects, namely the memory effect and turbophoresis. In the viscous region, the larger particles are on average faster than fluid and the velocity difference is found to be self-similar depending on outer Stokes number. The near-wall distribution of velocity difference is significantly correlated with the presence of high-momentum particles which are entrained by vortical structures generated in the outer region of the wall jet. These results are useful for environmental and engineering applications.  相似文献   

11.
The flow structure in a steady hydraulic jump in both the non-aerated and aerated regions was measured using the image-based particle image velocimetry and bubble image velocimetry techniques, respectively. Three highly aerated steady jumps with Froude numbers varying from 4.51 to 5.35 were tested, and a weak jump with a Froude number of 2.43 was generated for comparison. Mean velocities and turbulence statistics were obtained by ensemble averaging the repeated velocity measurements. Based on the mean velocities, the flow structure in the steady jumps was classified into four regions to distinguish their distinct flow behaviors; they are the potential core region, the boundary layer region, the mixing layer region, and the recirculation region. The flow structure in the weak jump features only three regions without the recirculation region. In addition, spatial variations of mean velocities, turbulence intensity, and Reynolds stresses were also presented. It was observed that the maximum horizontal bubble velocity and maximum horizontal water velocity occur at the same location in the overlapping regions of potential core and mixing layer. The ratio between the maximum horizontal bubble velocity and maximum horizontal water velocity is between 0.6 and 0.8, depending on the Froude number. Examining the mean horizontal bubble velocities in the mixing layer, a similarity profile was revealed with representative mixing layer thickness as the characteristic length scale and the difference between the maximum positive and maximum negative velocities as the characteristic velocity scale. It was also found that the mean horizontal water velocities in the near-wall region are self-similar and behave like a wall jet. Further analyzing autocorrelation functions and energy spectra of the water and bubble velocity fluctuations found that the energy spectra in the water region follow the ?5/3 slope, whereas the spectra in the bubble region follow a ?2/5 slope. In addition, the integral length scale of bubbles is one order of magnitude shorter than that of water.  相似文献   

12.
An experimental study of heat transfer during quenching of a cylindrical stainless steel test specimen has been performed. A subcooled water jet is directed onto the upward facing flat face of the cylinder. The test specimen is heated to an initial temperature slightly above 900 °C and then quenched. The resulting boiling curves and heat transfer distributions are presented for impingement velocities of 2.85 and 6.4 m/s (Re = 7900 and 18,900). High-speed imaging shows that three distinct regions on the quenched surface can be identified: an expanding circular wetted region surrounding the impinging point, annular transition zone just outside the wetting front, and a unwetted region outside this zone. The free-surface of the liquid in the wetted region is smooth in the nucleate and transition boiling regimes. The annular transition zone or the wetting front region outside the wetted region is characterized by a highly disturbed liquid-gas interface, which can be attributed to intense vapor generation. At the outer edge of the transition zone, the liquid is deflected away from the surface. The velocity of the wetting front significantly increases with the jet impact velocity, which indicates that the wetting front position is governed by the ability of the flowing liquid to transport the bubbles radially outwards from the wetted region.  相似文献   

13.
An explanation is given for a phenomenon observed e.g. in a wall jet in a small region near the maximum velocity. The turbulence shear stress is expressed as the sum of two terms, proportional to the first and the second derivative of the mean velocity, respectively. Use is made of the nonsymmetric flow pattern around the maximum velocity, and of the nonuniform distribution of the intensity of the lateral turbulence velocity component. The coefficient of the second derivative of the mean velocity is shown to contain the first derivative of this turbulence velocity component. Since the second derivative of the mean velocity is negative around its maximum, a positive turbulence intensity gradient as observed in the region concerned in the wall jet, results in a negative contribution to the shear stress. Hence, in this region the shear stress can have a sign opposite to the positive — though very small — gradient of the mean velocity. Consequences with respect to the mechanical energy balance of the mean flow and of the turbulence are discussed.  相似文献   

14.
A high Reynolds number flat plate turbulent boundary layer is investigated in a wind-tunnel experiment. The flow is subjected to an adverse pressure gradient which is strong enough to generate a weak separation bubble. This experimental study attempts to shed some new light on separation control by means of streamwise vortices with emphasize on the change in the boundary layer turbulence structure. In the present case, counter-rotating and initially non-equidistant streamwise vortices become and remain equidistant and confined within the boundary layer, contradictory to the prediction by inviscid theory. The viscous diffusion cause the vortices to grow, the swirling velocity component to decrease and the boundary layer to develop towards a two-dimensional state. At the position of the eliminated separation bubble the following changes in the turbulence structure were observed. The anisotropy state in the near-wall region is unchanged, which indicates that it is determined by the presence of the wall rather than the large scale vortices. However, the turbulence in the outer part of the boundary layer becomes overall more isotropic due to an increased wall-normal mixing and a significantly decreased production of streamwise fluctuations. The turbulent kinetic energy is decreased as a consequence of the latter. Despite the complete change in mean flow, the spatial turbulence structure and the anisotropy state, the process of transfer of turbulent kinetic energy to the spanwise fluctuating component seems to be unchanged. Local regions of anisotropy are strongly connected to maxima in the turbulent production. For example, at spanwise positions in between those of symmetry, the spanwise gradient of the streamwise velocity cause significant production of turbulent fluctuations. Transport of turbulence in the spanwise direction occurs in the same direction as the rotation of the vortices.  相似文献   

15.
研究了弹流反常温度场的形成机理及影响因素,指出入口温升是压缩功发热和逆流剪切热所致,而出口局部低温是负压缩功吸热的结果,出口温度的再次微幅上升则是压缩功消失后剪切热作用的结果.研究结果表明,入口温升随载荷的增加而增大,随卷吸速度的增加显著升高而几乎与滑滚比无关;在高速小滑滚比工况下,接触区的最高温度有可能出现在入口位置;入口温升增加了材料在工作中经受高温的次数,对其接触疲劳寿命有不利影响;在保证润滑性能的前提下,适当减少供油量可以减小逆流,从而降低入口温升。  相似文献   

16.
The rimming film condensation on the inside wall of a rotating cylinder with a scraper is analyzed. The whole cylinder is divided into two regions, one is the so-called boundary layer region where the radial velocity of the condensate is much smaller than the peripheric velocity so that the boundary layer theory is assumed to be valid; the other is the scraper region where because of the disturbance of the scraper the boundary layer theory does not apply. The boundary layer integral method in the boundary layer region coupling with the integral momentum theorem across the scraper region provides a method to determine the velocity, temperature, and film thickness distributions, and heat transfer coefficients. An extensive discussion about the previous models is given. The sublayer flow rate constancy principle and the variability principle of the boundary layer thickness (therefore the interface velocity) at the scraper position with respect to the rotational speed are proposed. The present model greatly improved the prediction of the average heat transfer coefficient. Received on 5 January 1998  相似文献   

17.
Understanding the impact of the changes in pollutant emission from a foreign region onto a target region is a key factor for taking appropriate mitigating actions. This requires a sensitivity analysis of a response function (defined on the target region) with respect to the source(s) of pollutant(s). The basic and straightforward approach to sensitivity analysis consists of multiple simulations of the pollution transport model with variations of the parameters that define the source of the pollutant. A more systematic approach uses the adjoint of the pollution transport model derived from applying the principle of variations. Both approaches assume that the transport velocity and the initial distribution of the pollutant are known. However, when observations of both the velocity and concentration fields are available, the transport velocity and the initial distribution of the pollutant are given by the solution of a data assimilation problem. As a consequence, the sensitivity analysis should be carried out on the optimality system of the data assimilation problem, and not on the direct model alone. This leads to a sensitivity analysis that involves the second‐order adjoint model, which is presented in the present work. It is especially shown theoretically and with numerical experiments that the sensitivity on the optimality system includes important terms that are ignored by the sensitivity on the direct model. The latter shows only the direct effects of the variation of the source on the response function while the first shows the indirect effects in addition to the direct effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This experimental study investigated the turbulent transport dissimilarity with a modulated turbulence structure in a channel flow of a viscoelastic fluid using simultaneous particle image velocimetry and planar laser-induced fluorescence measurements. An instantaneous dye concentration field with fluctuating velocity vectors showed that mass was transferred by hierarchically large-scale wavy motions with inclination. A co-spectral analysis showed that the spatial phase modulation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation corresponded to the relaxation time. The occurrence of intense dye concentration fluctuation and small streamwise velocity fluctuation in a thin boundary layer caused dissimilar turbulent transport because of the non-zero negative correlation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation only on large scales. This explains the turbulent transport dissimilarity which leads to the zero averaged Reynolds shear stress and non-zero wall-normal turbulent mass flux.  相似文献   

19.
Turbulent drag reducing flow with blowing polymer solution from the channel wall was investigated experimentally using particle image velocimetry (PIV). Experiments were carried out with varying conditions of blowing polymer solution (e.g. weight concentration of polymer solution). Reynolds number based on the channel height and mean velocity was set to 20000 and 40000. When the polymer solution was blown from the channel wall, streamwise velocity fluctuation little increased, but wall-normal velocity fluctuation, Reynolds shear stress and correlation coefficient decreased significantly only near the blower wall. This behavior corresponds to the decrease of the ejection and sweep in the near-wall region observed by the investigation of instantaneous velocity map. On the contrary, this characteristic behavior was not observed at a position away from the blower wall (y/(H/2) > 0.4) and the scatter plot was almost the same as that of the water flow in this region. These results suggest that there are two regions in the drag reducing flow with blowing polymer solution from the wall; one is a non-Newtonian region which exists near the blower wall, and the other is a Newtonian region at a distance from the wall. The non-Newtonian region plays a key role in the drag reduction by the blowing polymer solution.  相似文献   

20.
 Arbitrarily time-distributed velocity information acquired by laser Doppler velocimeter systems needs special care when evaluated wrt. the mean velocity and the components of the Reynolds stress tensor. In rotating machinery, the arrival time information can be uniquely mapped to the angular position ϕ of the runner blades by using encoder signals relating a fixed runner position to an arrival time. It is convenient to statistically evaluate the velocity information of the detected particles in an angular window [ϕ0−Δϕ/2,ϕ0+Δϕ/2] in order to obtain mean velocities and turbulence values for an angular position ϕ0. This approach has the inconvenience that turbulence values calculated from standard deviations are influenced by a possible variation in the mean velocity in the evaluation window. Other problems that arise with this “evaluation window” method are the influence of unevenly angular-distributed velocity information on the mean velocity or the poor resolution of maxima and minima of the mean velocity, which is similar to the problem pointed out by Jakoby et al. but being of second-order nature. In this paper, different improvements in the “evaluation window” method wrt these problems based on ideas found in a paper by McDonald and Owen are presented. A confidence interval calculation, generalizing the methods of Boutier, for all calculated values is included, which allows an appropriate window size Δϕ to be chosen for each particular situation. The different methods are compared using examples from wake flows of axial hydraulic turbomachinery measured in air and water. Received: 7 July 1999/Accepted: 18 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号