首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new hybrid reverse Monte Carlo (HRMC) procedure for atomistic modeling of the microstructure of activated carbons whereby the guessed configuration for the HRMC construction simulation is generated using the characterization results (pore size and pore wall thickness distributions) obtained by the interpretation of argon adsorption at 87 K using our improved version of the slit-pore model, termed the finite wall thickness (FWT) model (Nguyen, T. X.; Bhatia, S. K. Langmuir 2004, 20, 3532) . This procedure overcomes limitations arising from the use of short-range potentials in the conventional HRMC method, which make the latter unsuitable for carbons such as activated carbon fibers that are anisotropic with medium-range ordering induced by their complex pore structure. The newly proposed approach is applied specifically for the atomistic construction of an activated carbon fiber ACF15, provided by Kynol Corporation (Nguyen, T. X.; Bhatia, S. K. Carbon 2005, 43, 775) . It is found that the PSD of the ACF15's constructed microstructure is in good agreement with that determined using argon adsorption at 87 K. Furthermore, we have also found that the use of the Lennard-Jones (LJ) carbon-fluid interaction well depth obtained from scaling the flat graphite surface-fluid interaction well depth taken from Steele (Steele, W. A. Surf. Sci. 1973, 36, 317) provides an excellent prediction of experimental adsorption data including the differential heat of adsorption of simple gases (Ar, N(2), CH(4), CO(2)) over a wide range of temperatures and pressures. This finding is in agreement with the enhancement of the LJ carbon-fluid well depth due to the curvature of the carbon surface, found by the use of ab initio calculations (Klauda, J. B.; Jiang, J.; Sandler, S. I. J. Phys. Chem. B 2004, 108, 9842) .  相似文献   

2.
We present a stochastic multiscale method for modeling heterogeneous catalysis at the nanoscale. The system is decomposed into the fluid domain and the catalyst-fluid interface. We implemented the fluctuating hydrodynamics framework to model the diffusion of the chemical species in the fluid domain, and the chemical master equation to describe the catalytic activity at the interface. The coupling between the domains occurs simultaneously. Using a simple one-dimensional (1D) linear model, we showed that the predictions of our scheme are in excellent agreement with deterministic simulations. The method was specifically developed to model the spatially asymmetric catalysis on the surface of self-propelled nanoswimmers. Numerical simulations showed that our approach can estimate the uncertainty in the swimming velocity resulting from inherent stochastic nature of the chemical reactions at the catalytic interface. Although the method has been applied to simple 1D and 2D models, it can be generalized to handle different geometries and more sophisticated chemical reactions. Therefore, it can serve as a practical mathematical tool to study how the efficiency of chemically powered nanomachines is affected by the interplay between structural complexity, nonlinear reactivity, and nonequilibrium fluctuations.  相似文献   

3.
Obesity is one of the most provoking health burdens in the developed countries. One of the strategies to prevent obesity is the inhibition of pancreatic lipase enzyme. The aim of this study was to build QSAR models for natural lipase inhibitors by using the Monte Carlo method. The molecular structures were represented by the simplified molecular input line entry system (SMILES) notation and molecular graphs. Three sets – training, calibration and test set of three splits – were examined and validated. Statistical quality of all the described models was very good. The best QSAR model showed the following statistical parameters: r2 = 0.864 and Q2 = 0.836 for the test set and r2 = 0.824 and Q2 = 0.819 for the validation set. Structural attributes for increasing and decreasing the activity (expressed as pIC50) were also defined. Using defined structural attributes, the design of new potential lipase inhibitors is also presented. Additionally, a molecular docking study was performed for the determination of binding modes of designed molecules.  相似文献   

4.
Summary A rapid method is described for the determination of the areas under chromatographic curves (peaks). The method is based on the application of the Monte Carlo procedure, and its advantage lies in its successful application to irregular curves.  相似文献   

5.
This paper serves as an introductory review of Brownian Dynamics (BD), Molecular Dynamics (MD), and Monte Carlo (MC) modeling techniques. These three simulation methods have proven to be exceptional investigative solutions for probing discrete molecular, ionic, and colloidal motions at their basic microscopic levels. The review offers a general study of the classical theories and algorithms that are foundational to Brownian Dynamics, Molecular Dynamics, and Monte Carlo simulations. Important topics of interest include fundamental theories that govern Brownian motion, the Langevin equation, the Verlet algorithm, and the Metropolis method. Brownian Dynamics demonstrates advantages over Molecular Dynamics as pertaining to the issue of time-scale separation. Monte Carlo methods exhibit strengths in terms of ease of implementation. Hybrid techniques that combine these methods and draw from these efficacies are also presented. With their rigorous microscopic approach, Brownian Dynamics, Molecular Dynamics, and Monte Carlo methods prove to be especially viable modeling methods for problems with challenging complexities such as high-level particle concentration and multiple particle interactions. These methods hold promising potential for effective modeling of transport in colloidal systems.  相似文献   

6.
7.
8.
Studies of several models of polymers with the use of a version of the Monte Carlo method—entropy sampling combined with the Wang-Landau algorithm—are presented. This approach allows derivation of the energy distribution function over a broad energy range. On the basis of this distribution various thermal characteristics of the systems are calculated in a wide temperature range: internal energy, free energy, heat capacity, average gyration radius, and mean end-to-end distance. For simple continuum and lattice models of free chains and rings we consider the athermal case, with eliminated overlaps, and the thermal case, when nonvalence interactions between units at finite distances are accounted for. In the framework of the proposed approaches, the models of alkanes and the simplest polypeptide, polyglycine, and the lattice model of flexible polyelectrolyte are investigated.  相似文献   

9.
In this work we present results for the structure of aerogels coming from the diffusion-limited cluster aggregation simulation method. Pair distribution functions and structure factors, resulting from simulation, were considered as experimental input for reverse Monte Carlo modeling. The modeling yielded structural models with pair distribution functions and structure factors nearly identical to the results of the simulations. Particle configurations from both the simulations and reverse Monte Carlo modeling have been analyzed in terms of the distribution of the number of neighbors. It is suggested that the reverse Monte Carlo method, when applied to the structure factor, may be a suitable technique for the interpretation of experimental scattering data on colloidal aerogels.  相似文献   

10.
We present a method called local environment kinetic Monte Carlo (LE-KMC) method for efficiently performing off-lattice, self-learning kinetic Monte Carlo (KMC) simulations of activated processes in material systems. Like other off-lattice KMC schemes, new atomic processes can be found on-the-fly in LE-KMC. However, a unique feature of LE-KMC is that as long as the assumption that all processes and rates depend only on the local environment is satisfied, LE-KMC provides a general algorithm for (i) unambiguously describing a process in terms of its local atomic environments, (ii) storing new processes and environments in a catalog for later use with standard KMC, and (iii) updating the system based on the local information once a process has been selected for a KMC move. Search, classification, storage and retrieval steps needed while employing local environments and processes in the LE-KMC method are discussed. The advantages and computational cost of LE-KMC are discussed. We assess the performance of the LE-KMC algorithm by considering test systems involving diffusion in a submonolayer Ag and Ag-Cu alloy films on Ag(001) surface.  相似文献   

11.
The effect of using the transcorrelated variational Monte Carlo (TC-VMC) approach to construct a trial function for fixed node diffusion Monte Carlo (DMC) energy calculations has been investigated for the first-row atoms, Li to Ne. The computed energies are compared with fixed node DMC energies obtained using trial functions constructed from Hartree-Fock and density functional levels of theory. Despite major VMC energy improvement with TC-VMC trial functions, no improvement in DMC energy was observed using these trial functions for the first-row atoms studied. The implications of these results on the nodes of the trial wave functions are discussed.  相似文献   

12.
We introduce error weighting functions into the perturbative Monte Carlo method for use with a hybrid ab initio quantum mechanics/molecular mechanics (QM/MM) potential. The perturbative Monte Carlo approach introduced earlier provides a means to reduce the number of full SCF calculations in simulations using a QM/MM potential by evoking perturbation theory to calculate energy changes due to displacements of an MM molecule. The use of weighting functions, introduced here, allows an optimal number of MM molecule displacements to occur between the performance of the full self-consistent field calculations. This will allow the ab initio QM/MM approach to be applied to systems that require more accurate treatment of the QM and/or MM regions. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1632–1638, 1998  相似文献   

13.
14.
Due to the nonlinear relationship between the calorific value and the elemental concentration of biomass, methods such as linear regression, widely used in the literature to model this relationship, produce models that fail to provide well-grounded results. In this study, a novel approach, based on Monte Carlo parametric modeling, for calculating the calorific value of biomass from measurements provided by elemental analysis, is presented. Olive husk, a biomass source widely used in the Mediterranean basin, was the subject under investigation. A comprehensive analysis of the thermal properties of olive husk was conducted. The elemental analysis, as well as the calorific value, the moisture content the sampling and the preparation of the examined biomass were performed using the appropriate CEN standards and procedures. Based on the Monte Carlo parametric modeling, the parameters of an exponential model linking the elemental analysis and the calorific value of olive husk were estimated. This study is anticipated to provide further insight to the discussion on models for predicting the calorific value of biomass, by introducing a novel mathematical approach.  相似文献   

15.
An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials.  相似文献   

16.
We identify a set of multidimensional potential energy surfaces sufficiently complex to cause both the classical parallel tempering and the guided or unguided diffusion Monte Carlo methods to converge too inefficiently for practical applications. The mathematical model is constructed as a linear combination of decoupled Double Wells [(DDW)(n)]. We show that the set (DDW)(n) provides a serious test for new methods aimed at addressing rare event sampling in stochastic simulations. Unlike the typical numerical tests used in these cases, the thermodynamics and the quantum dynamics for (DDW)(n) can be solved deterministically. We use the potential energy set (DDW)(n) to explore and identify methods that can enhance the diffusion Monte Carlo algorithm. We demonstrate that the smart darting method succeeds at reducing quasiergodicity for n ? 100 using just 1 × 10(6) moves in classical simulations (DDW)(n). Finally, we prove that smart darting, when incorporated into the regular or the guided diffusion Monte Carlo algorithm, drastically improves its convergence. The new method promises to significantly extend the range of systems computationally tractable by the diffusion Monte Carlo algorithm.  相似文献   

17.
The hydration of the polyene antibiotic amphotericin B, which forms channels in phospholipid membranes, was investigated by the Monte Carlo method. The energy and structural characteristics of the hydration of the molecule and its three main sections (polar, channel-forming, and polyene) were established. The important role of the aqueous phase in the orientational stabilization of the molecules of amphotericin B in the channel complex was demonstrated.Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 24, No. 1, pp. 104–107, January–February, 1988.  相似文献   

18.
In this work, a neural network was used to learn features in potential energy surfaces and relate those features to conformational properties of a series of polymers. Specifically, we modeled Monte Carlo simulations of 20 polymers in which we calculated the characteristic ratio and the temperature coefficient of the characteristic ratio for each polymer. We first created 20 rotational potential energy surfaces using MNDO procedures and then used these energy surfaces to produce 10000 chains, each chain 100 bonds long. From these results we calculated the mean-square end-to-end distance, the characteristic ratio and its corresponding temperature coefficient. A neural network was then used to model the results of these Monte Carlo calculations. We found that artificial neural network simulations were highly accurate in predicting the outcome of the Monte Carlo calculations for polymers for which it was not trained. The overall average error for prediction of the characteristic ratio was 4,82%, and the overall average error for prediction of the temperature coefficient was 0,89%.  相似文献   

19.
Outlier detection is crucial in building a highly predictive model. In this study, we proposed an enhanced Monte Carlo outlier detection method by establishing cross‐prediction models based on determinate normal samples and analyzing the distribution of prediction errors individually for dubious samples. One simulated and three real datasets were used to illustrate and validate the performance of our method, and the results indicated that this method outperformed Monte Carlo outlier detection in outlier diagnosis. After these outliers were removed, the value of validation by Kovats retention indices and the root mean square error of prediction decreased from 3.195 to 1.655, and the average cross‐validation prediction error decreased from 2.0341 to 1.2780. This method helps establish a good model by eliminating outliers. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
把Monte Carlo方法引进STO双中心重叠积分的计算中,结果表明,它不仅计算简便、快速、很容易在计算机上实现,而且具有较高的精确度,有望推广应用于更复杂的多中心分子积分中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号