首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
压电智能环形板的主动控制   总被引:1,自引:0,他引:1  
姚林泉  俞焕然 《力学学报》1999,31(3):366-371
对在不同位置粘有任意多组压电传感器和压电执行器的轴对称弹性环形薄板的振动控制进行了研究.根据压电执行元件的等效作用量得到了压电智能环板的振动控制方程和传感方程,再利用分离变量法以及由传感器测得的电量和作用在执行器上电压之间的控制模式得到振动方程的全解.实行了对整体结构的主动控制.对不同的压电片布置进行了数值计算.结果表明:当离散分布压电元件布置越密,振动衰减的效果越佳  相似文献   

2.
Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960 s and stiffness sensors in the 1990 s based on the contact impedance method.In this work, we point out that both multilayer and unimorph(or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator–based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator–based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator–based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator–based sensor is more suitable for hard materials.  相似文献   

3.
The ability of the piezoelectric materials to work as sensors and actuators was employed in a technique for monitoring the degree of crack closure and to detect the crack opening load. The technique is demonstrated through experiments with a cracked beam. It consists in exciting the specimen with a piezoelectric actuator and recording the electromechanical response of piezoelectric sensors placed near the crack mouth, while applying a bending moment to open the crack. The sensors in the neighborhood of the crack present a reduction in the amplitude response signal due to the progressive decrease of the dynamic strains near the crack, as the bending load causes the crack to open, reducing the contact between the surfaces of the fatigue crack and the load transmission through the contact area. The results show that the method has a high sensitivity to the state of crack closure, allowing for the direct determination of the crack opening load.  相似文献   

4.
A theoretical framework for analyzing the pre- and postbuckling response of composite laminates and plates with piezoactuators and sensors is presented. The mechanics include nonlinear effects due to large rotations and stress stiffening, and are incorporated into a coupled mixed-field piezoelectric laminate theory. Using the previous mechanics, a nonlinear finite element method and an incremental-iterative solution are formulated for the analysis of nonlinear adaptive plate structures subject to in-plane electromechanical loading. A novel eight-node nonlinear plate finite element is also developed. Evaluation cases predict the buckling and postbuckling response of adaptive composite beams and plates with piezoelectric actuators and sensors. The case of piezoelectric buckling and postbuckling induced by the actuators is addressed and quantified. Finally, the possibility to actively mitigate the mechanical buckling and postbuckling response of adaptive piezocomposite plates is illustrated.  相似文献   

5.
The main objective of this research is to study the capability of Piezoelectric (PE) self-sensing actuators to suppress the transonic wing-box flutter, which is a flow-structure interaction phenomenon. The unsteady general frequency modified Transonic Small Disturbance (TSD) equation is used to model the transonic flow about the wing. The wing-box structure and the piezoelectric actuators are modeled using the equivalent plate method, which is based on the first-order shear deformation plate theory (FSDPT). The piezoelectric actuators are used as diagonal-links. The optimal electromechanical-coupling conditions between the piezoelectric actuators and the wing are collected from previous work. Three main different control strategies; Linear Quadratic Gaussian (LQG) which combines the Linear Quadratic Regulator (LQR) with the Kalman Filter Estimator (KFE), Optimal Static Output Feedback (SOF), and Classic Feedback Controller (CFC); are studied and compared. The optimum actuators and sensors locations are determined using the Norm of Feedback Control Gains (NFCG) and Norm of Kalman Filter Estimator Gains (NKFEG), respectively. A genetic algorithm (GA) optimization technique is used to calculate the controller and estimator parameters to achieve a target response.  相似文献   

6.
智能梁振动主动控制的广义位置函数法   总被引:3,自引:0,他引:3  
研究了具有离散分布式压电传感器、执行器的智能梁,在外加电场作用下振动模态与外加电场之间的耦合关系,提出了智能梁主动控制的一种新的计算方法-广义位置函数法,并引入执行器位置函数的级数展开式,简化了计算,结果表明,智能梁振动控制效果与压电执行器长度、数目以及位置有密切的关系。  相似文献   

7.
An axisymmetric electroelastic problem of hollow radially polarized piezoceramic cylinders made of functionally graded (FG) materials is analyzed. For the material properties of power-law profile, a closed-form solution is derived. For a general gradient variation, an analytic approach is suggested, which reduces the problem to a Fredholm integral equation. Solving the resulting equation, the response of the electroelastic field can be determined. No severe limitation is required for varying material properties in this method. Numerical results of a cylindrical FG piezoelectric tube with PZT-5H as the inner surface ceramic are evaluated, and the distribution of the radial and circumferential stresses as well as the electric potential for piezoelectric sensors and actuators are presented graphically under electric and mechanical stimuli, respectively. Our results indicate that the electroelastic response in an FG piezoceramic tube with material properties decreasing when the radius increases becomes more obvious than that with material properties increasing. Moreover, the gradient index strongly affects the stress distribution and electric response. The obtained results are helpful for the design of annular cylindrical FG piezoelectric sensors/actuators.  相似文献   

8.
弹性板振动的多模态主动控制   总被引:2,自引:0,他引:2  
采用多对压电片对板振动的多阶模态进行主动控制。为了改善结构振动控制的效果,本文对选用结构振动能量和控制信号能量作为控制目标函数的LQR控制算法作了初步研究。首先,按能量准则推导了控制目标函数中权系数矩阵(Q矩阵和R矩阵)的理论计算公式,为权系数矩阵的选取提供了一定的理论依据。然后,运用该算法,在研究了单对压电片进行振动主动控制的基础上.本文深入分析了压电层合板振动的多阶模态控制的问题,用Matlab进行系统仿真,得到了压电层合板受到初始位移激励下板中心点的位移和控制电压大小随时间变化的曲线。数值模拟的结果表明,该方法能达到更有效控制结构振动和减小控制能量消耗的目的.进一步验证了该方法能达到有效控制结构振动和减小控制能量消耗的目的。  相似文献   

9.
The dynamic behaviour of piezoelectric sensors depends on the bonding condition along the interface between the sensors and the host structure. This paper provides a comprehensive theoretical study of the effect of the bonding layer on the coupled electromechanical characteristics of a piezoelectric sensor bonded to an elastic substrate, which is subjected to a high frequency elastic wave. A sensor model with a viscoelastic bonding layer, which undergoes a shear deformation, is proposed to simulate the two dimensional electromechanical behaviour of the integrated system. Analytical solution of the problem is provided by using Fourier transform and solving the resulting integral equations in terms of the interfacial stress. Numerical simulation is conducted to study the effect of the bonding layer upon the dynamic response of the sensor under different loading frequencies. The results indicate that the modulus and the thickness of the bonding layer have significant effects on sensor response, but the viscosity of the bonding layer is relatively less important.  相似文献   

10.
A finite element technique is presented, which integrates the behaviour of circular sensor-actuator-elements within a macro-element. The macro-element is applied to the investigation of thin structures, if the excitation and the measurement of membrane vibrations are accomplished by piezoelectric actuators and sensors. The electromechanical equations are solved analytically within the macro-element, in order to avoid a spatial discretisation of the piezoelectric actuators. The numerical efficiency is obvious, since the discretisation of the structure becomes independent of the piezoelectric components.  相似文献   

11.
采用压电材料作为传感器和驱动器对智能结构振动主动控制进行研究,基于机电耦合的压电智能结构传感和驱动方程,将振动控制动力学方程变换到模态空间对方程进行解耦。通过计算结构最大应变,确定压电元件的最佳粘贴位置。考虑到系统过程噪声和量测噪声的影响,设计Kalman滤波器,采用基于线性二次型高斯(LQG)最优控制的独立模态空间控制方法对压电智能结构的振动进行控制。最后以压电智能悬臂梁为例进行控制仿真,验证了此方法的有效性。  相似文献   

12.
A theoretical framework for analyzing low-energy impacts of laminated shells with active and sensory piezoelectric layers is presented, including impactor dynamics and contact law. The formulation encompasses a coupled piezoelectric shell theory mixing first order shear displacement assumptions and layerwise variation of electric potential. An exact in-plane Ritz solution for the impact of open cylindrical piezoelectric–composite shells is developed and solved numerically using an explicit time integration scheme. The active impact control problem of adaptive cylindrical shells with distributed curved piezoelectric actuators is addressed. The cases of optimized state feedback controllers and output feedback controllers using piezoelectric sensors are analyzed. Numerical results quantify the impact response of cylindrical shells of various curvatures including the signal of curved piezoelectric sensors. Additional numerical studies quantify the impact response of adaptive cylindrical panels and investigate the feasibility of actively reducing the impact force.  相似文献   

13.
This paper presents a wavelet-based approach of deformation identification and vibration control of beam-type plates with geometrically nonlinear deflection using piezoelectric sensors and actuators. The identification is performed by transferring the nonlinear equations of identifying deflection into a system of solvable nonlinear algebraic equations in terms of the measurable electric charges and currents on piezoelectric sensors. After that, a control law of negative feedback of the identified signals of deflection and velocity is employed, and the weighted residual method is chosen to determine control voltages applied on the piezoelectric actuators. Due to that the scaling function transform is like a low-pass filter which can automatically filter out high-order signals of vibration or disturbance from the measurement and the controller employed here, this control approach does not lead to the undesired phenomenon of control instability which is generated by the spilling over of high-order signals. Finally, some numerical simulations are carried out to show the efficiency of the proposed approach.  相似文献   

14.
运七飞机座舱的压电主动振动控制实验研究   总被引:3,自引:0,他引:3  
由于实验规模与复杂性的限制 ,将压电材料用于实际飞机振动主动控制的实验研究极少 ,因而缺少对其实用潜力的探讨。为评估压电陶瓷在实际飞机结构上用于减振的可行性和效果 ,以运七飞机座舱壁板为试件 ,实地进行了基于准独立模态控制策略的主动振动控制实验 ,取得理想的控制效果 ;表明了建模和控制方法的正确性与有效性 ,同时反映出压电结构的应用潜力和前途是十分广阔的  相似文献   

15.
A method for the selection of sensor and actuator locations   总被引:1,自引:0,他引:1  
A new and efficient technique for determining optimal locations of sensors and actuators of intelligent structures is presented. The optimization of sensor and actuator locations is based on the 1st order singular value perturbations of observability and controllability. Using this method the optimal placements of sensors and actuators of the intelligent structurer can be selected. Two numerical examples are given to demonstrate the applications of the method. The impulse responses of structures due to different locations of actuators with the same control law are analyzed in detail. The project supported by the National Natural Science Foundation of China and the Mechanical Technique Development Foundation of China  相似文献   

16.
IntroductionDuetotheextensiveapplicationsofpiezoelectricmaterialsinsmartstructures,itisveryimportanttoprobeintotheirmechanismasactuatorsandsensors[1].Oneofthefirstimportantstudiesinvolvingthemodelingoftheperformanceofpiezoelectricactuatorswhicharesurfa…  相似文献   

17.
智能结构集智能材料与传统材料于一体,能够实现结构的主动控制,在航空航天等领域具有巨大的应用潜力.由于其系统复杂且具有多场耦合效应,智能结构的整体式优化设计方法成为结构控制技术研究的关键之一.为了提高压电智能结构的整体性能和变形精度,提出了同时考虑压电驱动器布局(分布位置及角度)和基体结构拓扑构型的协同优化设计新方法.采用多点约束方法 (multi-point constraints,MPC)建立压电驱动器和基体结构的连接,定义一种与测量点目标位移相关的权重函数,以实现结构的精确变形控制.通过协同优化设计,压电驱动器可以获得最优的分布位置及角度,同时基体结构获得最优的拓扑构型,从而提升了压电智能结构系统的整体驱动性能和变形精度.通过进一步分析,研究了精确变形、体分比约束与结构优化构型和整体刚度的关系,以及优化结果中可能存在的传力路径畸变现象.数值算例的设计结果表明,采用协同优化设计方法,能够扩大结构的寻优空间,有效减小变形误差,实现压电智能结构的精确变形控制.  相似文献   

18.
Based on the theory of piezoelasticity, a functionally graded piezoelectric sandwich cantilever under an applied electric field and/or a heat load is studied. All materials may be arbitrary functional gradients in the thickness direction. The static solution for the mentioned problems is presented by the Airy stress function method. As a special case, assuming that the material composition varies continuously in the direction of the thickness according to a power law distribution, a comprehensive parametric study is conducted to show the influence of electromechanical coupling (EMC), functionally graded index, temperature change and thickness ratio on the bending behavior of actuators or sensors. The distribution of electric field or normal stress in present FGPM actuators is continuous along the thickness, which overcomes the problem in traditional layered actuators. The solution facilitates the design optimization for different piezoelectric actuators and has another potential application for material parameter identification.  相似文献   

19.
A two-dimensional (2-D) continuous wavelet transform (CWT)-based damage detection algorithm using “Dergauss2d” wavelet for plate-type structures is presented. The 2-D CWT considered in this study is based on the formulation by Antoine et al. (2004). A concept of isosurface of 2-D wavelet coefficients is proposed, and it is generated to indicate the location and approximate shape or area of the damage. The proposed algorithm is a response-based damage detection technique which only requires the mode shapes of the damaged plates. This algorithm is applied to the numerical vibration mode shapes of a cantilever plate with different types of damage to illustrate its effectiveness and viability. A comparative study with other two 2-D damage detection algorithms, i.e., 2-D gapped smoothing method (GSM) and 2-D strain energy method (SEM), is performed, and it demonstrates that the proposed 2-D CWT-based algorithm is superior in noise immunity and robust with limited sensor data. The algorithm is further implemented in an experimental modal test to detect impact damage in an FRP composite plate using smart piezoelectric actuators and sensors, demonstrating its applicability to the experimental mode shapes. The present 2-D CWT-based algorithm is among a few limited studies in the literature to explore the application of 2-D wavelets in damage detection, and as demonstrated in this study, it can be used as a viable and effective technique for damage identification of plate- or shell-type structures.  相似文献   

20.
Ashour  O. N.  Nayfeh  A. H. 《Nonlinear dynamics》2002,28(3-4):309-322
A nonlinear adaptive vibration absorber to control the vibrations offlexible structures is investigated. The absorber is based on thesaturation phenomenon associated with dynamical systems possessingquadratic nonlinearities and a two-to-one internal resonance. Thetechnique is implemented by coupling a second-order controller with thestructure through a sensor and an actuator. Energy is exchanged betweenthe structure and the controller and, near resonance, the structure'sresponse saturates to a small value.Experimental results are presented for the control of a rectangularplate and a cantilever beam using piezoelectric ceramics andmagnetostrictive alloys as actuators. The control technique isimplemented using a digital signal processing board and a modelingsoftware. The control strategy is made adaptive by incorporating anefficient frequency-measurement technique. This is validated bysuccessfully testing the control strategy for a nonconventionalproblem, where nonlinear effects hinder the application of thenonadaptive controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号