首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

2.
Treatments of Mn(O(2)CR)(2) (R = Me, Ph) with NBu(4)MnO(4) in CH(3)CN or CH(3)CN/CH(2)Cl(2) in the presence of acetic acid, delta(1)-cyclohexenephosphonic acid (C(6)H(9)PO(3)H(2)), and 2,2'-bipyridine or 1,10-phenanthroline result in three novel dodecamanganese(III) clusters [Mn(12)O(8)(O(2)CMe)(6)(O(3)PC(6)H(9))(7)(bipy)(3)] (1), [Mn(12)O(8)(O(2)CPh)(6)(O(3)PC(6)H(9))(7)(bipy)(3)] (2), and [Mn(12)O(8)(O(2)CPh)(6)(O(3)PC(6)H(9))(7)(phen)(3)] (3). They have a similar Mn(12) core of [Mn(III)(12)(mu(4)-O)(3)(mu(3)-O)(5)(mu-O(3)P)(3)] with a new type of topologic structure. Solid-state dc magnetic susceptibility measurements of complexes 1-3 reveal that dominant antiferromagnetic interactions are propagated between the magnetic centers. The ac magnetic measurements suggest an S = 2 ground state for compounds 1 and 3 and an S = 3 ground state for compound 2.  相似文献   

3.
The magnetic properties of mixed-valent compounds of general formula Ru2Cl(mu-O2CR)4 [R = CH2-CH3 (1), C(Me)=CHEt) (2)] have been studied in the 2-300 K temperature range. This magnetic study also includes a revision of the magnetic properties of the complex Ru2Cl(mu-O2CCMePh2)4 (3). Compounds 1-3 show a linear structure and a strong antiferromagnetic coupling between the diruthenium units through the chlorine atoms according to previous studies. Two fitting models to explain the magnetic properties of these complexes that incorporate a large zero-field splitting together with a strong antiferromagnetic coupling are described. These models consider that each diruthenium unit (S = 3/2) is magnetically coupled to the nearest diruthenium unit and ignores the longer distance magnetic coupling. The fitting models were found to be successful in fitting the magnetic data of the linear diruthenium(II,III) complexes. The zero-field splitting, D, and the antiferromagnetic coupling, zJ, vary from 37.8 to 48.0 cm-1 and from -7.43 to -13.30 cm-1, respectively, for complexes. The D values are similar to those calculated for the nonlinear diruthenium(II,III) compounds and confirm the validity of the proposed fitting models.  相似文献   

4.
A wide variety of ruthenium porphyrin carbene complexes, including [Ru(tpfpp)(CR(1)R(2))] (CR(1)R(2) = C(p-C(6)H(4)Cl)(2) 1 b, C(p-C(6)H(4)Me)(2) 1 c, C(p-C(6)H(4)OMe)(2) 1 d, C(CO(2)Me)(2) 1 e, C(p-C(6)H(4)NO(2))CO(2)Me 1 f, C(p-C(6)H(4)OMe)CO(2)Me 1 g, C(CH==CHPh)CO(2)CH(2)(CH==CH)(2)CH(3) 1 h), [Ru(por)(CPh(2))] (por=tdcpp 2 a, 4-Br-tpp 2 b, 4-Cl-tpp 2 c, 4-F-tpp 2 d, tpp 2 e, ttp 2 f, 4-MeO-tpp 2 g, tmp 2 h, 3,4,5-MeO-tpp 2 i), [Ru(por)[C(Ph)CO(2)Et]] (por=tdcpp 2 j, tmp 2 k), [Ru(tpfpp)(CPh(2))(L)] (L = MeOH 3 a, EtSH 3 b, Et(2)S 3 c, MeIm 3 d, OPPh(3) 3 e, py 3 f), and [Ru(tpfpp)[C(Ph)CO(2)R](MeOH)] (R = CH(2)CH==CH(2) 4 a, Me 4 b, Et 4 c), were prepared from the reactions of [Ru(por)(CO)] with diazo compounds N(2)CR(1)R(2) in dichloromethane and, for 3 and 4, by further treatment with reagents L. A similar reaction of [Os(tpfpp)(CO)] with N(2)CPh(2) in dichloromethane followed by treatment with MeIm gave [Os(tpfpp)(CPh(2))(MeIm)] (3 d-Os). All these complexes were characterized by (1)H NMR, (13)C NMR, and UV/Vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1 d, 2 a,i, 3 a, b, d, e, 4 a-c, and 3 d-Os revealed Ru==C distances of 1.806(3)-1.876(3) A and an Os==C distance of 1.902(3) A. The structure of 1 d in the solid state features a unique "bridging" carbene ligand, which results in the formation of a one-dimensional coordination polymer. Cyclic voltammograms of 1 a-c, g, 2 a-d, g-k, 3 b-d, 4 a, b, and 3 d-Os show a reversible oxidation couple with E(1/2) values in the range of 0.06-0.65 V (vs Cp(2)Fe(+/0)) that is attributable to a metal-centered oxidation. The influence of carbene substituents, porphyrin substituents, and trans-ligands on the Ru==C bond was examined through comparison of the chemical shifts of the pyrrolic protons in the porphyrin macrocycles ((1)H NMR) and the M==C carbon atoms ((13)C NMR), the potentials of the metal-centered oxidation couples, and the Ru==C distances among the various ruthenium porphyrin carbene complexes. A direct comparison among iron, ruthenium, and osmium porphyrin carbene complexes is made.  相似文献   

5.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

6.
A series of new dicobalt complexes of the permethylated macrocyclic hexaamine dithiophenolate ligand H(2)L(Me) have been prepared and investigated in the context of ligand binding and oxidation state changes. The octadentate ligand is an effective dinucleating ligand that supports the formation of bioctahedral complexes with a central N(3)Co(mu-SR)(2)(mu-X)CoN(3) core structure, leaving a free bridging position X for the coordination of the substrates. The acetato- and cinnamato-bridged complexes [(L(Me))Co(II)(2)(mu-O(2)CMe)](+) (2) and [(L(Me))Co(II)(2)(mu-O(2)CCH=CHPh)](+) (5) were prepared by reaction of the mu-Cl complex [(L(Me))Co(II)(2)(mu-Cl)](+) (1) with the corresponding sodium carboxylates in methanol. The electrochemical properties of these and of the methyl carbonate complex [(L(Me))Co(II)(2)(mu-O(2)COMe)](+) (8) were also investigated. All complexes undergo two stepwise oxidations at ca. E(1)(1/2) = +0.22 and at E(2)(1/2) = ca. +0.60 V vs SCE, affording the mixed-valent complexes [(L(Me))Co(II)Co(III)(mu-O(2)CR)](2+) (3, 6, 9) and the fully oxidized Co(III)Co(III) forms [(L(Me))Co(III)(2)(mu-O(2)CR)](3+) (4, 7, 10), respectively. Compounds 3, 6, 9 and 4, 7, 10 refer to acetato-, cinnamato-, and methylcarbonato species, respectively. The Co(II)Co(III) compounds were prepared by comproportionation of the respective Co(II)(2) and Co(III)(2) compounds. The Co(III)Co(III) species were prepared by bromine oxidation of the Co(II)Co(II) forms. The crystal structures of complexes 2.BPh(4).MeCN, 3.(I(3))(2), 5.BPh(4).2MeCN, 6.(ClO(4))(2).EtOH, 7.(ClO(4))(3).MeCN.(H(2)O)(3), and 9.(ClO(4))(2).(MeOH)(2).H(2)O were determined by single-crystal X-ray crystallography at 210 K. The oxidations occur without gross structural changes of the parent complexes. The Co(II)Co(III) complexes are composed of high-spin Co(II) (d(7)) and low-spin Co(III) (d(6)) ions. The Co(III)Co(III) complexes are diamagnetic. The oxidation reactions affect the binding mode of the substrates. In the Co(II)(2) and Co(II)Co(III) forms the carboxylates bridge the two Co(2+) ions in a symmetric mu-1,3 fashion with uniform C-O bond distances, whereas asymmetric bridging modes, with one short C=O and one long C-O distance, are adopted in the fully oxidized species. This is consistent with the observed shifts in vibrational frequencies for nu(as)(C-O) and nu(s)(C-O) across the series.  相似文献   

7.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

8.
The reaction of Ru2Cl(mu-O2CMe)4 with 2,4-hexadienoic and 2-methoxyacetic acids affords the compounds Ru2Cl(mu-O2CR)4 [R = CH=CHCH=CHCH3 (1), CH2OMe (2)]. The structures of both complexes have been determined by X-ray crystallography. 1 crystallizes in the triclinic space group P-1 with a = 9.264(1) A, b = 12.661(8) A, c = 12.839(5) A, alpha = 106.09(3) degrees, beta = 77.89(2) degrees, gamma = 97.73(3) degrees, and Z = 2. 2 crystallizes in the nonstandard monoclinic space group P2(1)/c with a = 12.132(4) A, b = 11.570(2) A, c = 13.674(2) A, beta = 91.18(2) degrees, and Z = 4. Complexes 1 and 2 show [Ru2(mu-O2CR)4]+ units linked by chloride ions, giving zigzag chains with Ru-Cl-Ru angles of 119.43(4) degrees and 110.11(7) degrees, respectively. The Ru-Ru bond distances are 2.2857(9) A (1) and 2.290(1) A (2). A magnetic study, in the 2-300 K temperature range, of the new compounds and the previously described Ru2Cl(mu-O2CR)4 [R = CHMe2 (3), CMe3 (4), C4H4N (5)] is described. The polymeric complexes 1 and 2 and the nonpolymeric 3-5 show a large zero-field splitting which varies from 53.9 to 68.1 cm-1. These complexes also show a weak, but not negligible, through-space intermolecular antiferromagnetic coupling not observed in the previous magnetic studies carried out on these types of compounds.  相似文献   

9.
New cationic diruthenium complexes of the type [(arene)(2)Ru(2)(SPh)(3)](+), arene being C(6)H(6), p-(i)PrC(6)H(4)Me, C(6)Me(6), C(6)H(5)R, where R = (CH(2))(n)OC(O)C(6)H(4)-p-O(CH(2))(6)CH(3) or (CH(2))(n)OC(O)CH=CHC(6)H(4)-p-OCH(3) and n = 2 or 4, are obtained from the reaction of the corresponding precursor [(arene)RuCl(2)](2) and thiophenol and isolated as their chloride salts. The complexes have been fully characterised by spectroscopic methods and the solid state structure of [(C(6)H(6))(2)Ru(2)(SPh)(3)](+), crystallised as the hexafluorophosphate salt, has been established by single crystal X-ray diffraction. The complexes are highly cytotoxic against human ovarian cancer cells (cell lines A2780 and A2780cisR), with the IC(50) values being in the submicromolar range. In comparison the analogous trishydroxythiophenolato compounds [(arene)(2)Ru(2)(S-p-C(6)H(4)OH)(3)]Cl (IC(50) values around 100 μM) are much less cytotoxic. Thus, it would appear that the increased antiproliferative effect of the arene ruthenium complexes is due to the presence of the phenyl or toluyl substituents at the three thiolato bridges.  相似文献   

10.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

11.
The reaction of AgClO(4) and NH(3) in acetone gave [Ag(NH=CMe(2))(2)]ClO(4) (1). The reactions of 1 with [RhCl(diolefin)](2) or [RhCl(CO)(2)](2) (2:1) gave the bis(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(2)]ClO(4) [diolefin = 1,5 cyclooctadiene = cod (2), norbornadiene = nbd (3)] or [Rh(CO)(2)(NH=CMe(2))(2)]ClO(4) (4), respectively. Mono(acetimine) complexes [Rh(diolefin)(NH=CMe(2))(PPh(3))]ClO(4) [diolefin = cod (5), nbd (6)] or [RhCl(diolefin)(NH=CMe(2))] [diolefin = cod (7), nbd (8)] were obtained by reacting 2 or 3 with PPh(3) (1:1) or with Me(4)NCl (1:1.1), respectively. The reaction of 4 with PR(3) (R = Ph, To, molar ratio 1:2) led to [Rh(CO)(NH=CMe(2))(PR(3))(2)]ClO(4) [R = Ph (9), C(6)H(4)Me-4 = To (10)] while cis-[Rh(CO)(NH=CMe(2))(2)(PPh(3))]ClO(4) (11) was isolated from the reaction of 1 with [RhCl(CO)(PPh(3))](2) (1:1). The crystal structures of 5 and [Ag[H(2)NC(Me)(2)CH(2)C(O)Me](PTo(3))]ClO(4) (A), a product obtained in a reaction between NH(3), AgClO(4), and PTo(3), have been determined.  相似文献   

12.
The dinuclear cation [(C(6)Me(6))(2)Ru(2)(PPh(2))H(2)](+) (1) has been studied as the catalyst for the hydrogenation of carbon-carbon double and triple bonds. In particular, [1][BF(4)] turned out to be a highly selective hydrogenation catalyst for olefin functions in molecules also containing reducible carbonyl functions, such as acrolein, carvone, and methyljasmonate. The hypothesis of molecular catalysis by dinuclear ruthenium complexes is supported by catalyst-poisoning experiments, the absence of an induction period in the kinetics of cyclohexene hydrogenation, and the isolation and single-crystal X-ray structure analysis of the tetrafluoroborate salt of the cation [(C(6)Me(6))(2)Ru(2)(PPh(2))(CHCHPh)H](+) (2), which can be considered as an intermediate in the case of phenylacetylene hydrogenation. On the basis of these findings, a catalytic cycle is proposed which implies that substrate hydrogenation takes place at the intact diruthenium backbone, with the two ruthenium atoms acting cooperatively in the hydrogen-transfer process.  相似文献   

13.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

14.
The novel (mu-alkoxo)bis(mu-carboxylato)diruthenium complex K[Ru(2)(dhpta)(mu-O(2)C-p-ZnTPP)(2)] 3 was prepared by simple ligand substitution reaction. Strong antiferromagnetic interaction between two Ru(III) ions of 3 was observed with a coupling constant of -425 approximately -404 cm(-1). The cyclic voltammogram of 3 can be explained in terms of superposition of those of ZnTPP-p-CO(2)H and K[Ru(2)(dhpta)(mu-O(2)CPh)(2)] 2, indicating no significant electrochemical interaction. The large conproportionation constant estimated from the reduction potentials for Ru(III)Ru(III) and Ru(II)Ru(III) indicates great stability of the mixed-valence state. The mixed-valence species [Ru(II)Ru(III)(dhpta)(mu-O(2)C-p-ZnTPP)(2)](2-) 4 was prepared by controlled potential electrolysis. The electronic absorption spectrum of 4 was quite similar to that of [Ru(II)Ru(III)(dhpta)(mu-O(2)CCH(3))(2)](2-) which is a typical Class II complex. The fluorescence from the S(2) state of the ZnTPP unit of 3 was significantly (78%) quenched. The electron transfer from the ZnTPP unit to Ru(III) ions in 3 is a plausible mechanism, even though energy transfer could not be ruled out completely. The free energy change for electron transfer, Delta G(CS), was estimated to be ca.-1.1 eV, which is similar to typical values for the reorganization energy lambda in polar solvents. Hence, the electron transfer scheme is situated almost at the top of the Marcus parabola, enabling ultrafast electron transfer.  相似文献   

15.
Symmetrically disubstituted bis(3-hydroxyalkynyl) complex [TpRu{C[triple chemical bond]CCPh(2)(OH)}(2)(NO)] (1) (Tp = BH(pyrazol-1-yl)(3)) and unsymmetrically mixed (arylalkynyl)(3-hydroxyalkynyl) congener [TpRu(C[triple chemical bond]CC(6)H(4)Me){C[triple chemical bond]CCPh(2)(OH)}(NO)] (2) were newly prepared. Treatment of 1 or 2 with p-toluenesulfonic acid monohydrate was carried out to give unusual four-membered metallacyclic complexes [TpRu{C(=C=CPh(2))C(O)C(=CPh(2))}(NO)] (3) and [TpRu{C(=C=CPh(2))C(O)CH(C(6)H(4)Me)}(NO)] (5), respectively, as major products. Formation mechanism of 3 and 5 would involve insertion of the generated allenylidene group (Ru=C=C=CPh(2)) into the other Ru--C(alkynyl) bond, followed by hydration of the resulting alpha-alkynyl--allenyl fragment. With regards to the chemical reactivity of their four-membered metallacycles, treatment with aq. HCl in MeOH afforded the ring-opened one-HCl adducts, [TpRuCl{C(=C=CPh(2))C(O)CH=CPh(2)}(NO)] (7) and [TpRuCl{C(=C=CPh(2))C(O)CH(2)(C(6)H(4)Me)}(NO)] (8). On the other hand, the use of CH(2)Cl(2) and THF as the reaction solvent gave another type of one-HCl adducts [TpRu{CH(C(Cl)=CPh(2))C(O)C(==CPh(2))}(NO)] (9 a/9 b) and [TpRu{CH(C(Cl)=CPh(2))C(O)CH(C(6)H(4)Me)}(NO)] (11 a/11 b) as diastereomeric pairs, still retaining the four-membered ring structure. Moreover, their kinetically controlled products 9 b and 11 b were treated with aq. HCl to afford the ring-opened two-HCl adducts [TpRuCl{C(C(Cl)=CPh(2))(H)C(O)CH=CPh(2)}(NO)] (10) and [TpRuCl{CH(C(6)H(4)Me)C(O)CH(2)(C(Cl)=CPh(2))}(NO)] (12), respectively. In 10 and 12, each one Ru--C bond is cleaved at mutually different positions in the ring. Protonation on the carbonyl group would trigger the formation of 7-12.  相似文献   

16.
The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.  相似文献   

17.
The reaction of (NBu(4))(2)[Pt(C triple bond CPh)(4)] with Cd(ClO(4))(2).6H(2)O in a 1:1 molar ratio yields a white solid [PtCd(C triple bond CPh)(4)](n) 1 (75% yield) together with yellow crystals of a very unusual decanuclear platinum-cadmium cluster [Pt(4)Cd(6)(C triple bond CPh)(4)(mu-C triple bond CPh)(12)(mu(3)-OH)(4)] 2 in low yield. Slow diffusion of acetonic solutions of the starting materials under aerobic conditions only produces crystals of 2 which have been shown by an X-ray analysis to be composed of a big hexanuclear cation [Cd(6)(mu(3)-OH)(4)](8+) and four [Pt(C triple bond CPh)(4)](2-) anions, held together by Pt.Cd and pi.Cd acetylide interactions. On the other hand, treatment of the insoluble product 1 with 1 equiv of NBu(4)X yields tetranuclear mixed-metal soluble complexes (NBu(4))(2)[[Pt(mu-C triple bond CPh)(4)](2)(CdX)(2)] (X = Cl A, Br 3, CN 4), which contain two platinate fragments connected by two CdX units through Pt.Cd and mainly Cd.C(alpha) interactions. All complexes are strongly emissive in the solid state at room temperature.  相似文献   

18.
We report two new synthetic routes to the dinuclear Ru(I) complexes, [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 2,2'-bipyridine or 1,10-phenanthroline derivatives) that use RuCl(3).3H(2)O as a starting material. Direct addition of the bidentate diimine ligand to a methanolic solution of [Ru(CO)(2)Cl(2)](n) and sodium acetate yielded a mixture of [Ru(I)(2)(MeCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 4,4'-dmbpy, and 5,6-dmphen), and [Ru(II)(MeCO(2))(2)(CO)(2)(N( wedge )N)] (N( wedge )N = 4,4'-dmbpy and 5,5'-dmbpy). Single-crystal X-ray studies confirmed that the Ru(II) complexes had a trans-acetate-cis-carbonyl arrangement of the ligands. In contrast, the use of sodium benzoate resulted in the unexpected formation of a Ru-C bond producing ortho-cyclometalated complexes, [Ru(II)(O(2)CC(6)H(4))(CO)(2)(N( wedge )N)], where N( wedge )N = bpy or phen. A second approach used ligand exchange between a bidentate ligand (N( wedge )N) and the pyridine ligands of [Ru(I)(RCO(2))(CO)(2)(py)](2) to convert these neutral complexes into [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+). This method, although it involved more steps, was applicable for a wider variety of diimine ligands (R = Me and N( wedge )N = 4,4'-dmbpy, 5,5'-dmbpy, 5,6-dmphen; R = Ph and N( wedge )N = bpy, phen, 5,6-dmphen).  相似文献   

19.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

20.
A series of tin(II) amido complexes possessing m-terphenyl carboxylate ligands have been prepared. These complexes, namely [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Ph(3))](2), [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(3)Mes(2))](2), and [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Mes(2)Me)](2) [Mes = 2,4,6-trimethylphenyl], are the first structurally characterized examples of tin(II) carboxylate complexes exhibiting discrete Sn(2)O(4)C(2) heterocyclic cores. Initial reactivity studies led to the isolation of a 1,3-diaza-2,4-distannacyclobutanediyl, [(Mes(2)C(6)H(3)CO(2))Sn(mu-NSiMe(3))](2). This molecule possesses a Sn(2)N(2) heterocyclic core and it was crystallised as both the CH(2)Cl(2) and Et(2)O solvates. Although the tin atoms in this molecule have a formal oxidation state of 3+, preliminary computational studies on this molecule suggest that it is best described as a ground state singlet. Finally, the X-ray crystal structure of (CH(2)Cl)(Cl)Sn[N(SiMe(3))(2)](2), the product of oxidative addition of CH(2)Cl(2) to Sn[N(SiMe(3))(2)](2), is also presented herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号