首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanocomposites of carbon nanotubes and titanium dioxide (TiO2) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO2. In this work, we show evidence of the attachment of nanostructured TiO2 to multiwalled carbon nanotubes (MWNTs) by Raman spectroscopy. The nanostructured TiO2 was characterized by both full‐width at half‐maximum (FWHM) and the Raman shift of the TiO2 band at ca 144 cm−1, whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO2 shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO2. To complement the nanocomposite characterization, scanning electronic microscopy and X‐ray diffraction were performed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In the preparation of nanocomposites, there is competition between the dispersion of nanoparticles and the formation of agglomerates. In this study, radical copolymerization of ethyl acrylate and methyl methacrylate initiated by 2,2‐azobis (isobutyro) nitrile (AIBN) was performed, in the presence of titanium oxide (TiO2) nanoparticles modified in a new approach; a good dispersion of the nanoparticles in the unsaturated polyester (UP) matrix was obtained. The TiO2 nanoparticles were exposed to 3‐(methacryloxy) propyl trimethoxy silane as the coupling agent. The presence of coupling agent‐grafted TiO2 nanoparticles in the copolymerization process resulted in the formation of a polymeric layer on the surface of the TiO2 nanoparticles (doubly modified‐TiO2). The grafting of coupling agent molecules and consequently copolymer macromolecular chains onto the surface of TiO2 nanoparticles was investigated using Fourier transform infrared (FTIR) analysis. It found that the formation of an acrylate layer on the surface of nanoparticles was successful. Then, unsaturated polyester (UP)/TiO2 nanocomposites were prepared. The morphology was studied using transmission electron microscopy (TEM). Mechanical properties and ultraviolet visible (UV/VIS) spectroscopy of various samples, including the doubly modified‐TiO2 nanoparticles, with different nanoparticle inclusions and the unmodified‐TiO2 nanoparticles, were also investigated. The results showed the doubly modified‐TiO2 nanoparticles, compared to those of unmodified‐TiO2, had better nanoparticle dispersion causing improvement in the mechanical properties and UV shielding.  相似文献   

3.
Nanocomposites composed of multi-wall carbon nanotubes (MWNTs) and Fe3O4 nanoparticles were fabricated using solvothermal method. Transmission and scanning electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction measurements confirmed that these mulberry-like Fe3O4 microparticles which were combined with the MWNTs in a random pattern are constructed with tiny nanocrystallites (12 nm in average diameter). The magnetic properties of the Fe3O4/MWNTs nanocomposites were measured using a vibrating sample magnetometer. Results showed that the Fe3O4/MWNTs nanocomposites exhibited superparamagnetism at room temperature and possessed a lower saturation magnetization (around 27.6 emu/g) than that of the pure Fe3O4 nanoparticles (around 33.7 emu/g). The Fe3O4/MWNTs nanocomposites have potential applications in engineering and medicine.  相似文献   

4.
Iron phosphate (FePO4) is a promising candidate for the cathode material in lithium-ion cells due to its easy synthesis and low cost. However, the intrinsic drawbacks of FePO4 material (i.e., the low electronic conductivity and the low lithium-ion diffusion coefficient) result in poor capacity. To overcome the shortcomings, multi-wall carbon nanotubes (MWNTs) supported hydrated iron phosphate nanocomposites (FePO4·2H2O/MWNTs) are prepared using a novel homogeneous precipitation method. Meanwhile, the formation mechanism of highly dispersed and ultrafine FePO4·2H2O nanoparticles is discussed in detail. Electrochemical measurements show that FePO4·2H2O/MWNTs nanocomposites have a superior discharge capacity and stability. For example, FePO4·2H2O/MWNTs nanocomposites exhibit a high initial discharge capacity (129.9?mAhg?1) and a stable capacity retention (114.3?mAhg?1 after 20 cycles). The excellent electrochemical performance is attributed to the small particle size of FePO4·2H2O nanoparticles, the good electronic conductivity of MWNTs, and the three-dimensional conductive network structure of FePO4·2H2O/MWNTs nanocomposites.  相似文献   

5.
《Current Applied Physics》2018,18(4):469-476
In order to obtain SrFe12O19 nanoparticles, thermal treatment method was employed, and afterwards SiO2 and TiO2 nanoparticles were embedded in SrFe12O19 matrix SrFe12O19 nanoparticles. The SiO2 and TiO2 nanoparticles' effects were set in SrFe12O19 matrix and experimental techniques which include, transmission electron microscopy (TEM), x-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), x-ray analysis (EDX) and field emission scanning electron microscope (FESEM) were used in studying the physical properties of the prepared nanoparticles. The precise DASF method (derivation of absorption spectrum fitting) was employed in examining the optical properties. The addition of SiO2 and TiO2 nanoparticles to SrFe12O19 matrix resulted in the reduction of energy band gap values in compare with the SrFe12O19 nanoparticles. The chemical analysis of SrFe12O19/SiO2, SrFe12O19 nanoparticles, and SrFe12O19/TiO2 nanocomposites was carried out using energy dispersion X-ray analysis (EDX). Ferromagnetic behaviors were demonstrated by SrFe12O19 nanoparticles, SrFe12O19/SiO2 and SrFe12O19/TiO2 nanocomposites, and the behaviors were validated through the use of a vibrating sample magnetometer (VSM). A wasp-waist was observed through hysteresis loop of SrFe12O19/SiO2 nanocomposites, implying the presence of the two magnetic phases; soft and hard ferromagnetic.  相似文献   

6.
SPR based fiber optic sensor using nanocomposite is presented. Nanocomposites comprising of Pt nanoparticles with various volume fractions embedded in dielectric matrices of TiO2 and SnO2 are considered. Sensitivity enhances with increase in thickness of nanocomposite and volume fraction of nanoparticles for both nanocomposites. Optimized thicknesses are obtained to be 40 and 50 nm for Pt–TiO2 and Pt–SnO2 nanocomposites respectively while optimized volume fraction is found to be 0.85 for both nanocomposites. 40 nm thick Pt–TiO2 nanocomposite based sensor with 0.85 volume fraction possesses utmost sensitivity.  相似文献   

7.
TiO2 nanoparticles were self-assembled on three different dimensional nanocarbon (SWCNT, C60 and graphene) surfaces by a uniform thermal reaction. The effective anchoring of TiO2 nanoparticles on the nanocarbon surfaces was characterized by FT-IR, XRD, XPS, TEM, Raman spectroscopy, PL and UV-Vis. By investigating the effect of different carbon nanostructures on TiO2 photocatalyst system, we found that the enhancing photocatalytic activities of nanocarbon/TiO2 (NT) nanocomposites have still related to great adsorbability and effective charge transfer by nanocarbon introduced, however, no more insights can be provided for peculiar properties on different nanostructures, although graphene by itself has an excellent structure and morphology.  相似文献   

8.
Composite photocatalysts composed of TiO2 and ZrO2 have been prepared via the sol-gel method. The as-prepared nanocomposites are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrometry and fluorescence emission spectra. The results shows that TiO2/ZrO2 nanocomposites are composed of mainly anatase titania and tetragonal ZrO2. Incorporating TiO2 particles with ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure and leads to decreased fluorescence emission intensity. Most of the TiO2/ZrO2 nanocomposites exhibited comparable photocatalytic activity compared with commercial TiO2 for the degradation aqueous methyl orange (MO) under ultraviolet irradiation, while the composite with Zr/Ti mass ratio of 15.2% shows the highest photocatalytic performances. Furthermore, the as-prepared nanocomposites can be reused with little photocatalytic activity loss. Without any further treatment besides rinsing, the photocatalytic activity of TiO2/ZrO2 (15.2%) composites is still higher than after five-cycle utilization.  相似文献   

9.
SrFe12O19–TiO2 nanocomposites are usually used for absorbing microwaves in military and civil applications. In this work, microwave absorption properties of porous SrFe12O19 nanocomposites with 50% weight ratio of TiO2 have been investigated. 50% TiO2–50% SrFe12O19 nanocomposites were prepared by a controlled hydrolysis of titanium tetraisopropoxide in which SrFe12O19 nanoparticles were synthesized by a sol–gel auto combustion route. The morphology, crystalline structure and crystallite size of SrFe12O19–TiO2 nanocomposites were characterized by field emission scanning electron microscopy and X-ray powder diffraction. The magnetic measurements were carried out with a vibrating sample magnetometer. The microwave absorption was measured by a Vector Network Analyzer. The microwave absorption results indicated that the reflection losses for specimens with 52%–56% porosity and thicknesses of 1.8, 2.1 and 2.6 mm were not very low but minimum reflection loss for a specimen with 4.2 mm thickness reached upto −33 dB.  相似文献   

10.
Two soluble polymer grafted multi-walled carbon nanotubes (MWNTs), including poly(N-vinylcarbazole)-MWNTs and poly(methyl methacrylate)-MWNTs, are synthesized. Their nonlinear optical properties and opticaJ limiting (OL) performances are investigated by z-scan method with 527nm nanosecond laser pulses. These grafted MWNTs dissolved in chloroform show much better optical limiting performance than those of MWNTs and C60 in toluene solution. Nonlinear absorption and nonlinear scattering mechanism are taken into consideration for explaining the observed results. The comparison of the experimental results shows that nonlinear absorption is the dominant mechanism for OL performance of these new samples.  相似文献   

11.
A facile solution-chemical method has been developed to be capable of covering a multiwalled carbon nanotube (MWNTs) with iron oxide nanorods without using any bridging species. MWNTs in this composite were decorated randomly by α-Fe2O3 nanorods with diameters in the range of 3–5 nm and lengths of 15–30 nm. The formation route to anchor α-Fe2O3 nanorods onto MWNTs was proposed as the intercalation and adsorption of iron ions onto the wall of MWNTs, followed by the nucleation and growth of α-Fe2O3 nanorods. α-Fe2O3/MWNTs nanocomposites show specific high Brunauer–Emmett–Teller surface areas. The photocatalytic activity experiment indicated that the prepared α-Fe2O3/MWNTs nanocomposites exhibited a higher photocatalytic activity for the photocatalytic decolorization of rhodamine B aqueous solution under the visible-light illumination than the single phase α-Fe2O3 samples. This methodology made the synthesis of MWNTs-nanorods composites possible and may be further extended to prepare more complicated nanocomposites based on MWNTs for technological applications.  相似文献   

12.
《Composite Interfaces》2013,20(7):623-632
The rheological behaviour, dispersion, crystallization behavior, mechanical properties, fracture surface morphology of polyethylene (PE)/TiO2 nanocomposites prepared by melt compounding were investigated using rheometer, energy dispersive X-ray spectrometer (EDX), polarized microscopy, impact tester, universal testing machine and field-emission scanning electron microscopy (FE-SEM). The rheological analysis indicated a fine dispersion of TiO2 during the melt compounding. The large scaled surface dispersion of TiO2 nanoparticles was revealed by the EDX composition distribution maps. The introduction of 2.0 wt% TiO2 in composites improved the mechanical properties significantly compared to neat PE, and resulted in 45% increase in notched impact strength. Moreover, the further analysis and discussion showed the mechanical properties of the composites were controlled by the dispersion conditions of TiO2 and its nucleating effect on PE crystallization.  相似文献   

13.
A novel magnetic nanocomposite of γ-Fe2O3 nanoparticles decorated multiwalls carbon nanotubes (MWNTs) was synthesized for the first time by a simple chemistry precipitation method. The structure and morphology of the composite was characterized by X-ray powder diffractometer (XRD), TEM and EDS. The results of XRD and TEM show that γ-Fe2O3 nanoparticles is immobilized on the side wall of the MWNTs, the size of most of the particle is <5 nm.The EDS analysis shows that the atomic ratio of Fe to O is 2:3. The magnetization curves of the MWNTs and γ-Fe2O3 decorated MWNTs were measured by VSM at room temperature, which indicate that the saturated magnetization (Ms), remanence (Mr) and coercivity (Hc) of the decorated MWNTs are much larger than those of MWNTs, and the decorated MWNTs exhibit well magnetic properties.  相似文献   

14.
A rutile TiO2 (α-TiO2) and hexagonal wurtzite ZnO nanocomposite was directly and synchronously synthesized via arc discharge method submerged in de-ionized water. In correlation with the detailed characterization of the morphology, and crystalline structure of the prepared ZnO–TiO2 nanocomposites, the UV–visible and photoluminescence properties were studied. X-ray diffraction and transmission electron microscopy investigations revealed the co-existence of α-TiO2 and hexagonal wurtzite ZnO phases with the ZnO and α-TiO2 nanoparticles are in nanorod and nanospheres morphologies, respectively. The diameters of the synthesized nanocomposite particles are in the range of 5–70 nm. Interestingly, the as-prepared ZnO–TiO2 nanocomposite shows better photocatalytic activity for photodegradation of the methylene blue dye than both of pure ZnO and TiO2 nanocatalyts. This work would explore feasible routes to synthesize efficient metal or/and metal oxide nanocomposites for degrading organic pollutants, gas sensing or other related applications.  相似文献   

15.
Novel titanium oxide (TiO2) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO2 nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ~30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ~63.61 % while those prepared through propanol-induced drying step showed ~69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO2 nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO2 nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.  相似文献   

16.
CdTe–TiO2–graphene nanocomposites were successfully synthesized via a simple and relatively general hydrothermal method. During the hydrothermal environment, GO was reduced to reduced graphene oxide (RGO), accompanying with the anchoring of TiO2 nanoparticles on the surface of RGO. In the following process, CdTe quantum dots (QDs) were then in situ grown on the carbon basal planes. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and fluorescent spectroscopy. It is hoped that our current work could pave a way towards the fabrication of QDs–TiO2–RGO hybrid materials.  相似文献   

17.
A composite of polythiophene (PT) and nano-titanium dioxide (TiO2), possessing core–shell structure, was synthesized via oxidative polymerization of thiophene using FeCl3 in the presence of three different surfactants: anionic, cationic, and nonionic. The morphology of the obtained composite materials was investigated by SEM, proving the core–shell structure of the prepared nanocomposite. The formation and thermal stability of the PT onto TiO2 nanoparticles were confirmed by FTIR and TGA analyses, respectively. XRD data show all of composite materials were amorphous structures. The electrical properties of the nanocomposites were investigated in the presence of surfactant materials, and the best semiconductor property was observed for PT/TiO2-anionic system. This difference in the conductivity has been attributed to differences in the stability of the composites.  相似文献   

18.
In this paper, transparent thin films of nano titania filled Poly(methyl methacrylate) (PMMA) composites were synthesized by solvent casting method using tetra hydro furan as a solvent, with in situ nonaqueous ‘sol-gel’ transformation involving the mixing of titanium isopropoxide (as sol-gel precursor) and methanol. The present research work is focused at studying the effect of titania loading on optical and mechanical behavior of transparent nano hybrid thin films. The effect of nano Titanium dioxide (TiO2) loading on PMMA morphology was studied by using a scanning electron microscope (SEM). Bowl shaped structures were obtained in pure PMMA thin film, which were deformed on incorporation of TiO2 nanoparticles. This nanocomposite exhibits enhanced optical and mechanical properties. The peak of UV absorption is blue shifted to 261 and 266?nm with the incorporation of TiO2. At this wavelength, the absorption is increased up to approximately 397%. The nanocomposites exhibit increased tensile strength up to 40% and modulus up to 16%. Tg of PMMA increased from 84.8 to 86.7?°C on adding 1.25% TiO2 nanoparticles.  相似文献   

19.
Here we describe a single chemical route to obtain highly dispersed nanometric Ni particles embedded in titania/carbon matrixes (amorphous and crystalline). The synthesis of these nanocomposites is based on a polymeric precursor method. The metallic Ni nanoparticles (1-15 nm) were obtained in a single process. We also present the results of photocatalytic experiments involving a series of nanocrystalline composites based on TiO2/carbon with embedded Ni nanoparticles as nanocatalysts for rhodamine 6G degradation in aqueous solution and investigate the effects of the structure and properties of the nanocomposites on their photocatalytic applications. The effect of the different annealing treatments on the formation of TiO2 nanophases (anatase and/or rutile), the size of Ni particles and the role of the residual carbon phase on the final solid are also described.  相似文献   

20.
《Composite Interfaces》2013,20(3):251-262
Multi-walled carbon nanotubes (MWCNTs) and titanium dioxide nanocomposites (MWCNTs/TiO2) were fabricated by a simple novel colloidal processing route and tested as a photocatalyst for degradation of methylene blue under UV irradiation. The novel idea behind this work is to make MWCNTs and TiO2 nanoparticle suspensions separately highly oppositely charged and utilize the electrostatic force of attraction between two entities to deposit nanotitania onto MWCNTs surface. Particle charge detector, scanning electron microscopy, transmission electron microscope, energy dispersive X-rays, X-rays diffraction (XRD), and Raman spectroscopy were used to characterize the composite. XRD and Raman spectroscopic analysis showed the crystalline structure of deposited TiO2 over MWCNTs surface structure as anatase phase. It was found that MWCNTs/TiO2 composite structure have much higher photocatalytic activity compared to TiO2 nanoparticles. The composite material developed may find potential applications in the degradation of organic pollutants in aqueous medium under UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号