首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability constants of 1 : 1 complexes of ammonium ion with 18-crown-6 in water and aqueous dioxane (dioxane weight fraction 0.2, 0.4, 0.6, and 0.8) in the range 283-318 K were determined electrometrically, and the thermodynamic parameters of the complexation were calculated. The stability of the complexes is determined by the enthalpy factor. The contributions from the Gibbs energy of solvation of NH4 + ion, 18-crown-6·NH4 + complex, and free 18-crown-6 to stabilization of the complex with increasing content of dioxane in the mixed solvent were estimated. The thermodynamics of complexation of ammonium, sodium, and potassium ions with 18-crown-6 in aqueous-organic solvents, such as water-2-propanol, water-acetone, and water-dioxane, were compared considering the effects of reactant solvation. The variations of the conformational component of the Gibbs energy of solvation of 18-crown-6 and the parameters of selective solvation of the reactants were evaluated. The influence of the dielectric permittivity and donor-acceptor properties of mixed aqueous-organic solvents on the Gibbs energy of complexation and solvation of the cations and 18-crown-6 was subjected to correlation analysis.  相似文献   

2.
The concentration dependence of molar conductance for 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium hexafluorophosphate in binary mixtures of acetonitrile + methanol was investigated to explore the ion association behavior of imidazolium based ionic liquids. The limiting molar conductance $(\Uplambda_{m}^{0})$ ( Λ m 0 ) , association constants (K a 0 ) and the maximal distance between the oppositely charged ions in ion pairs (R ij ) in the mixed solvent mixtures were evaluated following the framework of Barthel’s low-concentration chemical model. The investigated ILs display opposing trends in ion association behavior with change in solvent composition of acetonitrile + methanol binary mixtures. The results are discussed in light of ionic liquid and solvent specific ion?solvent and ion?ion interactions in the mixed solvent systems.  相似文献   

3.
高博  胡小玲  赵玉真  刘姣  田甜 《化学通报》2019,82(6):527-533
合成了1-烷基-4-氨基-1,2,4-三唑硝酸盐含能离子液体([RATZ]NO3),并通过核磁和红外进行了结构表征;采用Gaussian09/B3LYP/6-311+G(d,p)密度泛函理论,计算了[RATZ]NO3的离子间相互作用能及摩尔体积;在298 K-323 K温度范围内,测定了不同配比[RATZ]NO3-EtOH混合溶液的饱和蒸气压,其中乙醇摩尔分数分别为0.984、0.996、0.999以及1.000。系统研究了[RATZ]NO3-EtOH混合溶液的饱和蒸气压、[RATZ]NO3的蒸气压及摩尔汽化焓与温度、离子间相互作用能以及结构之间的关系。结果表明:[RATZ]NO3-EtOH混合溶液的饱和蒸气压随着温度的升高、离子间作用能的减小以及阳离子体积的增大而增大,其沸点比纯溶剂高,且在298 K-323 K温度范围内[RATZ]NO3的平衡蒸气压均低于250 mPa,因此说明含能离子液体具有不挥发性,蒸气压极低,并通过理论计算得到的离子间相互作用能及体积,解释了[RATZ]NO3的摩尔汽化焓随烷基链增长而降低的原因。  相似文献   

4.
Summary One of the most complex establishments of standards in quality control is that for the measurement of acidity, the pH. Not only is this complexity linked with the environment or the matrix considered (solutions from chemical laboratories or industries, biophysiological fluids, sea waters, estuarine waters, freshwaters, acid rains, etc.) but also with the solvent type (water, nonaqueous solvents, aqueous-organic solvent mixtures). The results are distinct pH scales which, for each solvent considered, are articulated on one reference value standard (pHRVS) plus a group of primary standards (pHPS) and/or operational standards (pHos), as specified in recent IUPAC recommendations. Such specifications ensure that the above standards be determined according to the same electrochemical principles and procedures and be accurate typically to ±0.002 in pH. However, the acquisition and availability of such standards, though rapidly expanding, are hitherto limited to a few nonaqueous solvents or aqueous-organic solvent mixtures. Within this context, the determination of pHRVS in ethylene glycol/water mixtures, based on electromotive force measurements of the cell Pt|H2|RVS Buffer + KCl|AgCl|Ag|Pt over a range of temperatures and solvent compositions is here described. Anyway, the comparability of pH scales in different solvent media (and even in different environments) depends on the uncertain determinability of the primary medium effect upon the H+ ion. Finally, the predictability of the above standards, whithin acceptable reliability limits, for hitherto unexplored solvent media has been recently assessed in terms of such qualifying physicochemical quantities as solvent composition, dielectric constant and temperature. Status, applications and problems related to the above points are here analysed.  相似文献   

5.
Summary.  The distribution of tetraalkylammonium ions (C n H 2n+1 )4N+ (R +, TAAn +, n = 4–7) with picrate ion (pic ) and inorganic anions X , (Cl, Br, ClO 4), into various inert organic solvents was studied at 25.0°C. The distribution data were analyzed by taking into consideration the distribution of ion pairs, R + · X , and the dimerization of the ion pairs, (R + · X )2, in the organic phase. The ion-pair, distribution constant, K dist, increases with increasing chain length of the tetraalkylammonium ion and with increasing ionic radius of the anion. The values of K dist show a good correlation with the E T value of solvent, i.e. the solvation ability with respect to the anion, and smoothly increase with increasing E T. The effect of the solvent on the dimerization constants, K dim, is markedly different between the ion pairs of picrate ion and inorganic anions. In the case of picrate, K dim significantly decreases with decreasing length of the alkyl chain of the tetraalkylammonium ion, but hardly changes by changing the solvent. On the other hand, in the case of ion pairs of inorganic anions the value of K dim decreases with decreasing E T and is almost constant for all anions. These results were reasonably explained by the difference of the solvation of the anion moieties of the monomeric and dimeric ion pairs. Received May 15, 2001. Accepted (revised) July 18, 2001  相似文献   

6.
 The distribution of tetraalkylammonium ions (C n H 2n+1 )4N+ (R +, TAAn +, n = 4–7) with picrate ion (pic ) and inorganic anions X , (Cl, Br, ClO 4), into various inert organic solvents was studied at 25.0°C. The distribution data were analyzed by taking into consideration the distribution of ion pairs, R + · X , and the dimerization of the ion pairs, (R + · X )2, in the organic phase. The ion-pair, distribution constant, K dist, increases with increasing chain length of the tetraalkylammonium ion and with increasing ionic radius of the anion. The values of K dist show a good correlation with the E T value of solvent, i.e. the solvation ability with respect to the anion, and smoothly increase with increasing E T. The effect of the solvent on the dimerization constants, K dim, is markedly different between the ion pairs of picrate ion and inorganic anions. In the case of picrate, K dim significantly decreases with decreasing length of the alkyl chain of the tetraalkylammonium ion, but hardly changes by changing the solvent. On the other hand, in the case of ion pairs of inorganic anions the value of K dim decreases with decreasing E T and is almost constant for all anions. These results were reasonably explained by the difference of the solvation of the anion moieties of the monomeric and dimeric ion pairs.  相似文献   

7.
Mixed solvent was used to extract ion pairs formed from suitable cationic dye and sodium dodecyl sulfate in sea water. The extracts were used for spectrophotometric determinations. The extraction of ion pairs of various combinations is discussed. Ethyl violet and a mixture (1:1) of p-xylene and toluene are the most useful combination as the cationic dye and the extraction solvent. The extracts were determined spectrophotometrically at 611.2 nm; the molar absorptivity is 1.27 × 105 M?1 cm?1. The detection limit is 2.0 ppb in water based on three times the standard deviation of the blank. Extraction with this mixed solvent is as rapid and sensitive as with the best single solvent.  相似文献   

8.
Extraction by benzene solutions of TBP of carrier-free90Y(III) from mixed aqueous-organic nitrate and perchlorate solutions was studied with special respect to the S-shaped DY versus acid concentration plots observed in aqueous systems. The presence of organic solvents in the aqueous phase enhanced the extraction of Y(III) and also influenced the shape of the DY vs. acid concentration plots in that the minimum was shifted towards lower acid concentration, became less pronounced, and eventually vanished completely.  相似文献   

9.
The extraction of nitrophenols with polymethine dyes of the common formula R1-(CH=CH)3-R2, indolium and benzothiazolium derivatives was studied. The effect of the acidity of the solution, the nature and the concentration of the dye, and the nature of the organic solvent on the formation and extraction of ion pairs of nitrophenols was examined; the optimum conditions were found. The most important chemical analytical characteristics of the ion pairs were determined. Molar absorptivities of extracts are 11.9 × 104–14.3 × 104 for ion pairs of trinitrophenol and 6.8 × 104–10.1 × 104 for ion pairs of dinitrophenol. A new procedure was developed for the extraction-photometric determination of nitrophenols in a mixture.  相似文献   

10.
Combining experiment with theory reveals the role of self‐assembly and complexation in metal‐ion transfer through the water–oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X‐ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long‐range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu3+–3(NO3?) ion pairs involves incorporation of the “hard” metal complex into the core of “soft” aggregates. This seeds the formation of reverse micelles that draw the water and “free” amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod‐shaped polynuclear EuIII‐containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O‐donor ligands and anions, provide improved EuIII solvation environments that help drive interfacial transfer, as is reflected by the increasing EuIII partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal‐ion coordination with nanoscale structure to reveal the free‐energy balance that drives the phase transfer of neutral metal salts.  相似文献   

11.
利用超额拉曼光谱研究硝酸镁水溶液中的离子对   总被引:1,自引:0,他引:1  
利用超额拉曼光谱研究了室温下硝酸镁(Mg(NO3)2)溶液的离子缔合情况. 测量了该溶液羟基(-OH)伸 缩振动谱段和NO3-全对称伸缩振动谱段的拉曼光谱, 利用超额拉曼光谱及光谱拟合分析了这些光谱数据. - OH伸缩振动谱段的超额拉曼光谱显示, 低浓度(<2.3 mol·kg-1)下阴离子第一水合层的水分子含量随溶液浓度 的升高呈线性关系增加, 在较高浓度时(>2.3 mol·kg-1), 该含量变化偏离了线性关系, 这是因为Mg(NO3)2溶液 在高浓度时存在直接接触离子对导致的. 同样的转折点浓度也在对NO3- 全对称伸缩振动谱段的分析中被观测 到. 除了直接接触离子对, 还观测到三种溶剂分隔型离子对. 对该谱段下所有浓度的拉曼光谱和超额光谱进行 同时拟合, 给出了不同浓度下各种离子对的相对含量, 结果显示在0.23-4.86 mol·kg-1浓度范围内都有溶剂分 隔型离子对和直接接触型离子对. 当Mg(NO3)2浓度低于2.3 mol·kg-1时, 所有离子对的相对含量随浓度增加呈 现直线上升, 在高于这个浓度后直接接触离子对的相对含量急剧增加, 一种溶剂分隔型离子对的相对含量增加 变缓, 另一种溶剂分隔型离子对的相对含量逐渐减少, 还有一种溶剂分隔型离子对相对含量的增加趋势保持不 变, 在Mg(NO3)2浓度大于3.5 mol·kg-1后, 其相对含量不再发生明显变化.  相似文献   

12.
The kinetics of photosensitized oxidation of anthracene with singlet molecular oxygen (1??g) in organic and aqueous-organic media were studied. The bimolecular rate constant of the reaction was determined, and its relation to solvent properties was revealed. On the basis of the obtained data, the empirical reaction rate constant in water was estimated at 2.3 × 106 l mol?1 s?1.  相似文献   

13.
The chiral separation of dansyl-amino acids has been performed by capillary zone electrophoresis using ¶β-cyclodextrin as a chiral selector, urea as an additive and 2-propanol and methanol as organic modifiers. The enantiomeric separations of dansyl-amino acids were investigated in aqueous medium and compared with the separation in mixed aqueous-organic medium as background electrolytes. The separation conditions, (concentration of buffer, β-cyclodextrin, methanol, urea and the pH value of buffer) were optimized. In the absence of organic modifier, only five pairs of 8 separated dansyl-amino acids were resolved when run separately. A mixture of up to eight chiral amino acids can be baseline resolved in less than 19 min by β-cyclodextrin-modified capillary zone electrophoresis with a buffer of 60 mmol L–1 H3BO3-KCl/40 mmol L–1 NaOH (pH 9.0), 4 mol L–1 urea, 100 mmol L–1β-cyclodextrin and 10% (v/v) methanol.  相似文献   

14.
Poly(N‐isopropylacrylamide) (PNIPAM) is well known to exhibit reentrant behavior or cononsolvency in response to the composition of a mixed solvent consisting of water and a low‐chain alcohol. Since the solvent structure plays an important role in this phenomenon, the presence of structure‐breaking/structure‐making ions in solution is expected to have a dramatic effect on the cononsolvency of PNIPAM. The present work examines the way that the presence of different salts can modify the reentrant‐phase diagram displayed by a cationic PNIPAM microgel in the mixed ethanol/water solvent. The effects of four Hofmeister anions—SO42?, Cl?, NO3? and SCN?—with different abilities to modify the solvent structure are analyzed. The species with kosmotropic or structure‐making character show a clear competition with ethanol for the water molecules, intensifying the nonsolvency of the PNIPAM with the EtOH volume fraction (?e). However, striking results are found with the most chaotropic or structure‐breaking anion, SCN?. In contrast to what happens in water‐rich solutions, the presence of SCN? in alcohol‐rich solvents enhances the solubility of the polymer, which macroscopically results in the microgel swelling. Moreover, this ion displays great stabilizing properties when ?e> is 0.2. These results have been explained by considering how chaotropic or structure‐breaking ions interact with water and ethanol molecules.  相似文献   

15.
The results of ring opening in styrene oxide by alcohols, amines, amino alcohols, and diamines were generalized. On low polarizing ability of the solvent, the main direction of the process is the formation of normal α-substituted products. The solvent effect on regioselectivity of the reaction was studied for N,N-diethylethylenediamine. The ratio of products correlates well with the value of dielectric constant for mixed aqueous-organic solvents and with the parameters of polarity E T and AN for neat solvents.  相似文献   

16.
ACE was applied to the quantitative evaluation of noncovalent binding interactions between benzo‐18‐crown‐6‐ether (B18C6) and several alkali metal ions, Li+, Na+, K+, Rb+ and Cs+, in a mixed binary solvent system, methanol–water (50/50 v/v). The apparent binding (stability) constants (Kb) of B18C6–alkali metal ion complexes in the hydro‐organic medium above were determined from the dependence of the effective electrophoretic mobility of B18C6 on the concentration of alkali metal ions in the BGE using a nonlinear regression analysis. Before regression analysis, the mobilities measured by ACE at ambient temperature and variable ionic strength of the BGE were corrected by a new procedure to the reference temperature, 25°C, and the constant ionic strength, 10 mM . In the 50% v/v methanol–water solvent system, like in pure methanol, B18C6 formed the strongest complex with potassium ion (log Kb=2.89±0.17), the weakest complex with cesium ion (log Kb=2.04±0.20), and no complexation was observed between B18C6 and the lithium ion. In the mixed methanol–water solvent system, the binding constants of the complexes above were found to be about two orders lower than in methanol and about one order higher than in water.  相似文献   

17.
《Polyhedron》1987,6(6):1337-1342
The composition of the solvent cage of chloropentaamminechromium(III) ion was determined in water—dimethyl sulfoxide media using proton NMR line-broadening methods and the approach of Covington and coworkers. The number of solvent molecules in the solvent cage was found to be 10. The stepwise formation constants for the substitution of 10 water molecules by 10 dimethylsulfoxide molecules in this solvent cage were calculated. After the first such substitution each successive substitution becomes 1027 J mol−1 more difficult, exclusive of statistical factors, than the preceding substitution. The solvent cage composition was assumed to apply to the chloropentaamminecobalt(III) ion. Mercury(II)-assisted removal of chloride ion from the latter complex gave [Co(NH3)5{OSMe2}]3+/[Co(NH3)5(H2O)]3+ product ratios which did not correlate with either the solvent cage composition or the activity ratio of the two solvent components in the bulk phase of the solvent.  相似文献   

18.
For p-(dimethylamino)chalcone (p-DMAC), the N atom is the most basic site in the liquid phase, whereas the O atom possesses the highest proton affinity in the gas phase. A novel and interesting observation is reported that the N- and O-protonated p-DMAC can be competitively produced in atmospheric pressure chemical ionization (APCI) with the change of solvents and ionization conditions. In neat methanol or acetonitrile, the protonation is always under thermodynamic control to form the O-protonated ion. When methanol/water or acetonitrile/water was used as the solvent, the protonation is kinetically controlled to form the N-protonated ion under conditions of relatively high infusion rate and high concentration of water in the mixed solvent. The regioselectivity of protonation of p-DMAC in APCI is probably attributed to the bulky solvent cluster reagent ions (SnH+) and the analyte having different preferred protonation sites in the liquid phase and gas phase.
Figure  相似文献   

19.
Infrared vibrational spectroscopy was used to probe concentration-dependent ion pair dissociation of imidazolium-based ionic liquids with three different halide anions (I, Br, and Cl) in deuterated chloroform. Dissociation of the ion pairs at low concentrations of ionic liquids was found to be the easiest for ionic liquid with Cl anion, the most electronegative anion among the three investigated. This anomalous trend of ion pair dissociation was explained in terms of varying interaction strength between the solvent (CDCl3) and the anions investigated.  相似文献   

20.
The IR spectra of alkaline and alkaline earth metal perchlorate and of lithium bromide solutions in acetonitrile, obtained with the help of FTIR measurements in the region of the C-N stretching mode of the solvent, reveal bands produced by acetonitrile molecules in the solvation shells and bands of ClO 4 ions in contact and solvent separated ion pairs. The shift and the attenuation of the C-N stretching band of acetonitrile at 2254 cm–1 is used for the calculation of cation solvation numbers for Li+(4), Na+(4), Mg2+(6), Ca2+(6), and Ba2+(6). No solvation is assumed for the contact ion pairs of LiClO4, LiBr, NaClO4, Mg(ClO4)2, Ca(ClO4)2, and Ba(ClO4)2. The association constants of the symmetrical electrolytes are compared to those obtained from other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号