共查询到20条相似文献,搜索用时 15 毫秒
1.
Further evidence is presented for the existence of a non-confining phase at weak coupling in SU(2) lattice gauge theory. Using Monte Carlo simulations with the standard Wilson action, gauge-invariant SO(3)–Z2 monopoles, which are strong-coupling lattice artifacts, have been seen to undergo a percolation transition exactly at the phase transition previously seen using Coulomb gauge methods, with an infinite lattice critical point near β=3.2 . The theory with both Z2 vortices and monopoles and SO(3)–Z2 monopoles eliminated is simulated in the strong-coupling (β=0 ) limit on lattices up to 60 4. Here, as in the high- β phase of the Wilson-action theory, finite size scaling shows it spontaneously breaks the remnant symmetry left over after Coulomb gauge fixing. Such a symmetry breaking precludes the potential from having a linear term. The monopole restriction appears to prevent the transition to a confining phase at any β . Direct measurement of the instantaneous Coulomb potential shows a Coulombic form with moderately running coupling possibly approaching an infrared fixed point of α∼1.4 . The Coulomb potential is measured to 50 lattice spacings and 2 fm. A short-distance fit to the 2-loop perturbative potential is used to set the scale. High precision at such long distances is made possible through the use of open boundary conditions, which was previously found to cut random and systematic errors of the Coulomb gauge fixing procedure dramatically. The Coulomb potential agrees with the gauge-invariant interquark potential measured with smeared Wilson loops on periodic lattices as far as the latter can be practically measured with similar statistics data. 相似文献
2.
We investigate the duality between the lattice gauge model and the bosonic model. We construct the relations between the gauge field operators and particle operators, and map the low-energy regime of the lattice gauge model to a bosonic model coupled with a gauge field. The mapped model can be interpreted as a bosonic model with particle-hole symmetry, or a mean-field form of the bosonic model with the coexistence of a two-particle pairing and four particle-pairing. The duality between the lattice gauge model and the bosonic model provides a direct connection between gauge theory and strongly correlated systems. 相似文献
3.
We study the three-dimensional (3D) compact U(1) lattice gauge theory coupled with N-flavor Higgs fields by means of the Monte Carlo simulations. This model is relevant to multi-component superconductors, antiferromagnetic spin systems in easy plane, inflational cosmology, etc. It is known that there is no phase transition in the N = 1 model. For N = 2, we found that the system has a second-order phase transition line in the c2 (gauge coupling)- c1 (Higgs coupling) plane, which separates the confinement phase and the Higgs phase. Numerical results suggest that the phase transition belongs to the universality class of the 3D XY model as the previous works by Babaev et al. and Smiseth et al. suggested. For N = 3, we found that there exists a critical line similar to that in the N = 2 model, but the critical line is separated into two parts; one for c2< c2tc=2.4±0.1 with first-order transitions, and the other for c2tc< c2 with second-order transitions, indicating the existence of a tricritical point. We verified that similar phase diagram appears for the N = 4 and N = 5 systems. We also studied the case of anistropic Higgs coupling in the N = 3 model and found that there appear two second-order phase transitions or a single second-order transition and a crossover depending on the values of the anisotropic Higgs couplings. This result indicates that an “enhancement” of phase transition occurs when multiple phase transitions coincide at a certain point in the parameter space. 相似文献
4.
The CP violating Dashen phase in QCD is predicted by chiral perturbation theory to occur when the up–down quark mass difference becomes sufficiently large at fixed down-quark mass. Before reaching this phase, all physical hadronic masses and scattering amplitudes are expected to behave smoothly with the up-quark mass, even as this mass passes through zero. In Euclidean space, the topological susceptibility of the gauge fields is positive at positive quark masses but diverges to negative infinity as the Dashen phase is approached. A zero in this susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. I discuss potential ambiguities with this determination. 相似文献
6.
We study the stationary points of what is known as the lattice Landau gauge fixing functional in one-dimensional compact U(1) lattice gauge theory, or as the Hamiltonian of the one-dimensional random phase XY model in statistical physics. An analytic solution of all stationary points is derived for lattices with an odd number of lattice sites and periodic boundary conditions. In the context of lattice gauge theory, these stationary points and their indices are used to compute the gauge fixing partition function, making reference in particular to the Neuberger problem. Interpreted as stationary points of the one-dimensional XY Hamiltonian, the solutions and their Hessian determinants allow us to evaluate a criterion which makes predictions on the existence of phase transitions and the corresponding critical energies in the thermodynamic limit. 相似文献
7.
We show that, independently of the boundary conditions, the two phases of the 4-dimensional compact U(1) lattice gauge theory can be characterized by the presence or absence of an “infinite” current network, with an appropriate definition of “infinite” network takes values 0 or 1 in the cold and hot phase, respectively. It thus constitutes a very efficient order parameter, which allows one to determine the transition region at low computational cost. In addition, for open and fixed boundary conditions we address the question of the impact of inhomogeneities and give examples of the reappearance of an energy gap already at moderate lattice sizes. 相似文献
8.
This is a review of the constrained dynamical structure of Poincaré gauge theory which concentrates on the basic canonical and gauge properties of the theory, including the identification of constraints, gauge symmetries and conservation laws. As an interesting example of the general approach, we discuss the teleparallel formulation of general relativity. 相似文献
10.
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1) -invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4×4 . We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. 相似文献
11.
We prove that in the d=2+1, U(1) Hamiltonian (continuous time) lattice gauge theory the confining potential between two static external charges grows logarithmically with their distance, at sufficiently high temperatures. As it is known that for zero or low temperatures and large coupling constant the model confines linearly, we have therefore established the existence of a Kosterlitz-Thouless transition. Our results are based on a Mermin-Wagner type of argument combined with correlation inequalities and known results for the two-dimensional (spin) Villain model. 相似文献
12.
In conventional gauge theory, a charged point particle is described by a representation of the gauge group. If we propagate the particle along some path, the parallel transport of the gauge connection acts on this representation. The Lagrangian density of the gauge field depends on the curvature of the connection which can be calculated from the holonomy around (infinitesimal) loops. For Abelian symmetry groups, say G= U(1), there exists a generalization, known as p-form electrodynamics, in which ( p−1)-dimensional charged objects can be propagated along p-surfaces and in which the Lagrangian depends on a generalized curvature associated with (infinitesimal) closed p-surfaces. In this article, we use Lie 2-groups and ideas from higher category theory in order to formulate a discrete gauge theory which generalizes these models at the level p=2 to possibly non-Abelian symmetry groups. An important feature of our model is that it involves both parallel transports along paths and generalized transports along surfaces with a non-trivial interplay of these two types of variables. Our main result is the geometric picture, namely the assignment of non-Abelian quantities to geometrical objects in a coordinate free way. We construct the precise assignment of variables to the curves and surfaces, the generalized local symmetries and gauge invariant actions and we clarify which structures can be non-Abelian and which others are always Abelian. A discrete version of connections on non-Abelian gerbes is a special case of our construction. Even though the motivation sketched so far suggests applications mainly in string theory, the model presented here is also related to spin foam models of quantum gravity and may in addition provide some insight into the role of centre monopoles and vortices in lattice QCD. 相似文献
13.
Recent progress in the field of lattice gauge theories is briefly reviewed for a nonspecialist audience. While the emphasis
is on the latest and more definitive results that have emerged prior to this symposium, an effort has been made to provide
them with minimal technicalities. 相似文献
14.
Different possibilities for the introduction of quantum group gauge fields are discussed. The case of the quantum group SU q(2) is considered in more detail. We seek for a construction of the quantum group gauge fields which possesses a minimal set of usual c-number fields. It turns out that in this construction the components of the quantum group gauge field take values in the quantum Euclidean space. 相似文献
16.
We discuss the Z(2) theory using a hamiltonian formulation and emphasize the roles of gauge invariance and duality. Whereas the phases of the pure gauge theory can be characterized as electric-or magnetic-confining, one finds that in the presence of matter the two resulting phases can be characterized as matter-or gauge-screening. We investigate their properties by considering the exact vacua at the limiting points of the parameter space. Using such vacua in a mean-field approach we display the existence of a finite line of first-order phase transitions in the matter-screening phase and discuss its physical meaning. 相似文献
17.
Recent developments in lattice gauge theory are discussed from a statistical mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of. QCD will be discussed and a few remarks concerning future directions of the field will be made.Supported in part by the NSF under grant No. PHY82-01948 相似文献
18.
In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. 相似文献
19.
We construct a generalization of pure lattice gauge theory (LGT) where the role of the gauge group is played by a tensor category. The type of tensor category admissible (spherical, ribbon, symmetric) depends on the dimension of the underlying manifold (≤3, ≤4, any). Ordinary LGT is recovered if the category is the (symmetric) category of representations of a compact Lie group. In the weak coupling limit we recover discretized BF-theory in terms of a coordinate-free version of the spin foam formulation. We work on general cellular decompositions of the underlying manifold. In particular, we are able to formulate LGT as well as spin foam models of BF-type with quantum gauge group (in dimension ≤4) and with supersymmetric gauge group (in any dimension). Technically, we express the partition function as a sum over diagrams denoting morphisms in the underlying category. On the LGT side this enables us to introduce a generalized notion of gauge fixing corresponding to a topological move between cellular decompositions of the underlying manifold. On the BF-theory side this allows a rather geometric understanding of the state sum invariants of Turaev/Viro, Barrett/Westbury and Crane/Yetter which we recover. The construction is extended to include Wilson loop and spin network type observables as well as manifolds with boundaries. In the topological (weak coupling) case this leads to topological quantum field theories with or without embedded spin networks. 相似文献
20.
Conventional approaches to lattice gauge theories do not properly consider the topology of spacetime or of its fields. In this paper, we develop a formulation which tries to remedy this defect. It starts from a cubical decomposition of the supporting manifold (compactified space-time or spatial slice) interpreting it as a finite topological approximation in the sense of Sorkin. This finite space is entirely described by the algebra of cochains with the cup product. The methods of Connes and Lott are then used to develop gauge theories on this algebra and to derive Wilson's actions for the gauge and Dirac fields therefrom which can now be given geometrical meaning. We also describe very natural candidates for the QCD θ-term and Chern-Simons action suggested by this algebraic formulation. Some of these formulations are simpler than currently available alternatives. The paper treats both the functional integral and Hamiltonian approaches. 相似文献
|