首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The two-dimensional orthogonal wavelet transform was applied to the LIF image of lobed mixing jet for identifying the multi-scale turbulent structures. The digital imaging slice photographs atz /D=1.0 and 1.5 withRe=3000 were respectively decomposed into seven image components with different broad scales. These image components provided the visualized information on the multi-scale structures in a lobed mixing turbulent jet. The cores and edges of the vortices and the coherent structures at different resolutions or scales can be easily extracted. It was found that the scale range of the coherent structure becomes narrow along the downstream direction. The size of the intermediate- and small-scale structures does not vary significantly with downstream distance.  相似文献   

2.
To obtain a rigorous definition of the chemical bonds in binary transition-metal aluminides, topological analyses were performed for VAl3 and TiAl3 in the D022 and L12 structures. The analyses were based on the valence charge densities calculated with the ab initio density functional theory. To better understand the formation mechanism of the pseudogap in these compounds, the band structure, the density of states (DOS) and the band decomposed charge density (BDCD) were calculated. The topological analyses reveal that the interactions between the (V, Ti) and Al atoms are all pure shared-shell interactions, the bonds are covalent and clearly have π-bond character. The study of the band structure, DOS and BDCD shows that the formation of the pseudogap is due to the crystal field energy splitting of the (V, Ti)-3d orbitals combined with the inter-unit-cell orbital interaction.  相似文献   

3.
The emergence of wave patterns in chemical and biological systems is of interest for the understanding of development, differentiation, signaling, and other phenomena. In this work we report a new type of wave pattern - called the “global wave” - which was observed in populations of Dictyostelium discoideum cells exposed to an excess of cyclic adenosine- 3′, 5′- monophosphate (cAMP) added to the supporting agar. It has been found that the addition of different amounts of cAMP to the agar leads to important deviations from the standard course of aggregation: (i) the formation and propagation of a global wave that has not been observed before; (ii) the delayed onset or absence of cAMP waves patterning; (iii) an atypical mechanism of cells clustering; and (iv) a faster or incomplete developmental cycle. We suggest that the global wave is a chemotactic response of the Dictyostelium cells to a wave of the cAMP concentration.  相似文献   

4.
The revealed “Christmas-tree” nanostructures in the cover and ground scales of the butterfly Morpho menelaus are responsible for the observed iridescent blue color and the diffraction pattern of the wings. The aspect ratio of nanostructures in ground scales is more than 5 times higher than that of Morpho peleides cover scales. Inspired by the butterfly, artificial nanostructures are fabricated successfully by templating the scales imbricating in the wings with low-temperature atomic layer deposition (ALD) methods. Through structural characterizations and optical measurements, we reveal that the hybrid structures inherit not only the morphology of the scales with high fidelity but also the homologous optical features including iridescence and diffraction. Besides, water contact angle measurements on both uncoated and coated wings show hydrophobic results. The integration of bio-templates and ALD methods provide a potential route to fabricate the nanostructures with multi-functional features, which may be especially crucial in the applications of innovative functional optical devices.  相似文献   

5.
《Comptes Rendus Physique》2009,10(8):740-750
Foods, consumer products and cosmetics belong to a wide range of colloidal and non-colloidal materials. Often, they are composite materials comprising several classes of fluid and solid constituents, including biopolymer gels, particulate suspensions, emulsions and foams. Length scales relevant for such materials may be anywhere between those associated with the molecular conformation of the ingredients up to long-scale dimensions of processing flows. The corresponding time scales may be in the sub-millisecond regime during aggregation of the ingredients or up to years during the shelf life of the final product. Rheological research of food material focuses on both the interaction between its ingredients, which might exhibit a complex rheological response function themselves and the influence of processing on the food structure and its properties. This brief overview summarizes suitable food rheology approaches and is grouped by the degree of abstraction of length scales and interactions. To cite this article: P. Fischer et al., C. R. Physique 10 (2009).  相似文献   

6.
A Gibbs-like approach for simultaneous multi-scale correlation functions in random, time-dependent, multiplicative processes for the turbulent energy cascade is investigated. We study the optimal log-normal Gibbs-like distribution able to describe the subtle effects induced by non-trivial time dependency on both single-scale (structure functions) and multi-scale correlation functions. We provide analytical expression for the general multi-scale correlation functions in terms of the two-point correlations between multipliers and we show that the log-normal distribution is already accurate enough to reproduce quantitatively many of the observed behavior. The main result is that non-trivial time effects renormalize the Gibbs-like effective potential necessary to describe single-time statistics. We also present a generalization of this approach to more general, non log-normal, potentials. In the latter case one obtains a formal expansion of both structure functions and multi-scale correlations in terms of cumulants of all orders.  相似文献   

7.
8.
The fundamental supra-atomic scale of nanometer attosecond processes in condensed matter creates a multiscale hierarchy of electromechanical interfaces through two-electron dissipation of energy of quantum nanoelectromechanical systems. The space-time scales of electromechanical interfaces are specified, beginning with the subatomic scale of electron Compton length λe, by a sequence of degrees n = 1, 2, 3,... of the fine structure constant α -n. The third scale, with n = 3, corresponds to quantum mesoelectromechanical 2D interfaces which form functional matrices of electromechanical energy stores and converters as active nucleation centers of fractal topological defects in adjacent crystal structure regions. The hierarchy of electromechanical interfaces creates a hierarchy of dissipative structures in mesomechanics of solids and biomimetics of soft materials.  相似文献   

9.
Solar broadband heating directly drives the atmospheric and ocean circulations, and is largely determined by cloud spatial 3-diminesional (3D) structures. To study the cloud 3D effects on radiation, a 3D broadband Monte-Carlo radiative transfer model, along with an Independent Pixel/Column Approximation (IPA) method, is used to simulate radiation and heating rate of three typical cloud fields generated by cloud resolving models (CRM). A quantitative and statistical estimation of cloud 3D effects has been developed to investigate the impact of cloud 3D structures on both heating rate strength, STD_Bias, and vertical distribution, CorrCoef. The cloud 3D structures affect some clouds more in heating rate strength and others more in vertical distribution. It is crucial to use the combination of CorrCoef and STD_Bias for better quantitative evaluation of the 3D effects. Furthermore, there is no simple way to define a critical resolution (or average radius), within which the IPA heating rate profiles closely represent the true 3D heating rate profiles. The critical radius (or resolution) strongly depends on solar incident angle as well as cloud vertical distribution. Also, the critical radii for clear-sky columns are larger than for cloudy columns, although the corresponding STD_Bias for clear-sky columns are smaller than for cloudy columns. Analysis based on two different statistical average methods illustrates that the cloud 3D effects due to the dimensionality difference between the 3D clouds (circle average) and 2D clouds (line average) significantly impact on the heating rate profiles.  相似文献   

10.
We present the predictions of various models for D → Kπ?ν decay for the K-π system in the region of the K1 resonance. In this system both vector and axial vector currents can be studied. One of these models also applies to the D → K?ν decay mode. Also, tests are given for general Kπ?ν of the pure vector hypothesis for the (c, s) current.  相似文献   

11.
We consider scalar (intensity, ellipticity) and gradient vector invariants for monochromatic field configurations of dimension D<1. We analyze their spatial structure and peculiarities of the vector invariants (divergence and ambiguity, vortex fields) near singular regions (intensity extrema, regions of circular and linear polarizations). We study the convergence and definiteness of physical quantities (the multipole moments of atoms, the light-induced force, the diffusion tensor) with an invariant representation in the basis of these vector invariants. Various spatial structures of singular regions are presented for symmetric two-and three-dimensional configurations of a monochromatic field.  相似文献   

12.
Dynamic effects caused by the magnetoelectric and antiferroelectric interactions in tetragonal antiferromagnets are studied. The analysis is based on the example of trirutiles that are a series of antiferromagnets with different exchange structures and orientation states. We are mainly dealing with the excitation by an alternating electric field E(t) of spin waves typical of these magnets (antiferroelectric resonance) and the nuclear magnetoelectric resonance connected with these interactions. In the first case, special emphasis is placed on specific magnons (antimagnons), where only the antiferromagnetism vectors L take part in oscillations, whereas the total ferromagnetism vector M remains unchanged. The nuclear magnetoelectric resonance can be generated by oscillations of both L and M caused by field E(t). In this way, the field contributes to the hyperfine field, which acts on the nuclear spins. It is shown that the magnetic and antiferroelectric interactions in the dynamics can manifest themselves both at high (usually, exchange) frequencies ωwE (antiferroelectric resonance) and at rather low nuclear frequencies of ωnE. Particular cases of magnetic structures (phases) are considered where field E(t) can excite not only antimagnons, but also quasiantiferromagnons that have lower eigenfrequencies than those of quasimagnons (relativistic and semirelativistic).  相似文献   

13.
The mpx3 phases (M = Mn, Fe, Ni; X = S, Se) with sheet structures are insulators with localized moments. They show antiferromagnetic ordering at low temperatures. From the magnetic structures determined by neutron diffraction the magnetic interactions are considered and shown to be characteristic of 2D behavior.  相似文献   

14.
Metal 4d photoelectron spectra of the lanthanoid oxides Ln2O3 are reported. The 4d signals are complex, showing subsidiary structure due both to electrostatic interactions within the 4d94?n configurations and to accompanying O 2p → Ln 4? charge-transfer excitations (shake-up). The effects of electrostatic coupling, including configuration interaction in the final state, are analysed in terms of a simple model.  相似文献   

15.
The interaction between αamylase from Bacillus subtilis and cetyltrimethylammonium bromide (CTAB) has been investigated at various temperature conditions using fluorescence and circular dichroism (CD) spectroscopic methods. Fluorescence data revealed that the fluorescence quenching of αamylase by CTAB is the result of complex formation between CTAB and αamylase. The thermodynamic analysis on the binding interaction data shows that the interactions are strongly exothermic (ΔH°=−17.92 kJ mol−1) accompanied with increase in entropy (ΔS° between 109 to 135 J mol−1 K−1). Thus the binding of CTAB to α-amylase is both enthalpic and entropic driven, which represent the predominate role of both electrostatic and hydrophobic interactions in complex formation process. The values of 2.17×10−3 M−1 and 1.30 have been obtained from associative binding constant (Ka) and stoichiometry of binding number (n), from analysis of fluorescence data, respectively. Circular dichroism spectra showed the substantial conformational changes in secondary structure of αamylase due to binding of CTAB, which represents the complete destruction of both secondary and tertiary structure of α-amylase by CTAB.  相似文献   

16.
We examine dimension-six extensions of the standard electroweak Lagrangian which are invariant under localSU(2) L ×U(1) Y -transformations. The dimensionfour trilinear and quadrilinear effective interactions of the vector bosons with one another are found to coincide with the vector boson interactions previously derived from globalSU(2) weak isospin symmetry broken by electromagnetism. Supplementing the model by a well-known dimension-six single-parameter quadrupole interaction leads to the most general vector boson self-couplings that can be obtained by addition of dimension-six terms to the standard Lagrangian. We examine in some detail anotherSU(2) L ×U(1) Y -symmetric interaction which containsW 3 B mixing and modifies both vector boson self-couplings and fermionic interactions. Independently of being strongly constrained by the LEP 1 data, the addition of this interaction to the above-mentioned non-standard ones does not change the form of the trilinear and quadrilinear non-standard self-couplings of the vector bosons. Therefore, while being interesting in itself with respect to LEP 1 physics, this term is irrelevant with respect to the phenomenology of the vector-boson self-interactions.  相似文献   

17.
X. Yin 《哲学杂志》2013,93(24):2984-3005
Discrete dislocation plasticity was used to analyse plane-strain indentation of a single-crystal elastic–plastic semi-infinite medium by a rigid surface exhibiting multi-scale roughness, characterised by self-affine (fractal) behaviour. Constitutive rules of dislocation emission, glide and annihilation were used to model short-range dislocation interactions. Dislocation multiplication and the development of subsurface shear stresses due to asperity microcontacts forming between a single-crystal medium and a rough surface were examined in terms of surface roughness and topography (fractal) parameters, slip-plane direction and spacing, dislocation source density, and contact load (surface interference). The effect of multi-scale interactions between asperity microcontacts on plasticity is elucidated in light of results showing the evolution of dislocation structures. Numerical solutions yield insight into plastic flow of crystalline materials in normal contact with surfaces exhibiting multi-scale roughness.  相似文献   

18.
We have measured the triple correlation $D\langle\vec J_n\rangle/J_n\cdot (\vec\beta_e\times\hat p_\nu)$ with a polarized cold-neutron beam (Mumm et al., Phys Rev Lett 107:102301, 2011; Chupp et al., Phys Rev C 86:035505, 2012). A non-zero value of D can arise due to parity-even-time-reversal-odd interactions that imply CP violation. Final-state effects also contribute to D at the level of 10???5 and can be calculated with precision of 1 % or better. The D coefficient is uniquely sensitive to the imaginary part of the ratio of axial-vector and vector beta-decay amplitudes as well as to scalar and tensor interactions that could arise due to beyond-Standard-Model physics. Over 300 million proton-electron coincidence events were used in a blind analysis with the result D?=?[???0.94±1.89 (stat)±0.97(sys)]×10???4. Assuming only vector and axial vector interactions in beta decay, our result can be interpreted as a measure of the phase of the axial-vector coupling relative to the vector coupling, $\phi_{\rm AV}= 180.012^\circ \pm 0.028^\circ$ . This result also improves constrains on certain non-VA interactions.  相似文献   

19.
The Hamiltonian structure of a class of three-dimensional (3D) Lotka-Volterra (LV) equations is revisited from a novel point of view by showing that the quadratic Poisson structure underlying its integrability structure is just a real three-dimensional Poisson-Lie group. As a consequence, the Poisson coalgebra map Δ(2) that is given by the group multiplication provides the keystone for the explicit construction of a new family of 3N-dimensional integrable systems that, under certain constraints, contain N sets of deformed versions of the 3D LV equations. Moreover, by considering the most generic Poisson-Lie structure on this group, a new two-parametric integrable perturbation of the 3D LV system through polynomial and rational perturbation terms is explicitly found.  相似文献   

20.
Evolution is full of coevolving systems characterized by complex spatio-temporal interactions that lead to intertwined processes of adaptation. Yet, how adaptation across multiple levels of temporal scales and biological complexity is achieved remains unclear. Here, we formalize how evolutionary multi-scale processing underlying adaptation constitutes a form of metacognition flowing from definitions of metaprocessing in machine learning. We show (1) how the evolution of metacognitive systems can be expected when fitness landscapes vary on multiple time scales, and (2) how multiple time scales emerge during coevolutionary processes of sufficiently complex interactions. After defining a metaprocessor as a regulator with local memory, we prove that metacognition is more energetically efficient than purely object-level cognition when selection operates at multiple timescales in evolution. Furthermore, we show that existing modeling approaches to coadaptation and coevolution—here active inference networks, predator–prey interactions, coupled genetic algorithms, and generative adversarial networks—lead to multiple emergent timescales underlying forms of metacognition. Lastly, we show how coarse-grained structures emerge naturally in any resource-limited system, providing sufficient evidence for metacognitive systems to be a prevalent and vital component of (co-)evolution. Therefore, multi-scale processing is a necessary requirement for many evolutionary scenarios, leading to de facto metacognitive evolutionary outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号