首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a three-qubit isotropic Heisenberg XX model with a constant external magnetic field, we construct an entangled quantum heat engine (QHE). The expressions for several thermodynamic quantities such as the heat transferred, the work and the efficiency are derived. Moreover, the influence of the entanglement on the thermodynamic quantities is investigated analytically and numerically. Several interesting features of the variation of the heat transferred, the work and the efficiency with the concurrences of the thermal entanglement of two different thermal equilibrium states in zero and nonzero magnetic fields are obtained. At last, we discussed the maximum efficiency of the QHE.  相似文献   

2.
何济洲  何弦  郑洁 《中国物理 B》2012,21(5):50303-050303
Based on a two-qubit isotropic Heisenberg XY model under a constant external magnetic field,we construct a four-level entangled quantum heat engine(QHE).The expressions for the heat transferred,the work,and the efficiency are derived.Moreover,the influence of the entanglement on the thermodynamic quantities is investigated analytically and numerically.Several interesting features of the variations of the heat transferred,the work,and the efficiency with the concurrences of the thermal entanglement of two different thermal equilibrium states in zero and nonzero magnetic fields are obtained.  相似文献   

3.
An entangled quantum refrigerator working with a three-qubit one-dimensional isotropic Heisenberg XX model in a constant external magnetic field is constructed in this paper. Based on the quantum first law of thermodynamics, the expressions for several basic thermodynamic quantities such as the heat transferred, the net work and the coefficient of performance are derived. Moreover, the influence of the thermal entanglement on the basic thermodynamic
quantities is investigated. Several interesting features of the variation of the basic thermodynamic quantities with the thermal entanglement in zero and nonzero magnetic field are obtained.  相似文献   

4.
We construct an entangled quantum heat engine (EQHE) based on two two-spin systems with Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction. By applying the explanations of heat transferred and work performed at the quantum level in Kieu’s work [Phys. Rev. Lett. 93, 140403 (2004)], the basic thermodynamic quantities, i.e., heat transferred, net work done in a cycle and efficiency of EQHE are investigated in terms of DM interaction and concurrence. The validity of the second law of thermodynamics is confirmed in the entangled system. It is found that there is a same efficiency for both antiferromagnetic and ferromagnetic cases, and the efficiency can be controlled in two manners: (1) only by spin-spin interaction J and DM interaction D; (2) only by the temperature T and concurrence C. In order to obtain a positive net work, we need not entangle all qubits in two two-spin systems and we only require the entanglement between qubits in a two-spin system not be zero. As the ratio of entanglement between qubits in two two-spin systems increases, the efficiency will approach infinitely the classical Carnot one. An interesting phenomenon is an abrupt transition of the efficiency when the entanglements between qubits in two two-spin systems are equal.  相似文献   

5.
Based on an isotropic two spin-1/2 qubits Heisenberg model with the Dzyaloshinskii-Moriya interaction in an external magnetic field, we have constructed an entangled quantum refrigerator. Expressions for the basic thermodynamic quantities, i.e., the heat exchanged, the net work input, and the coefficient of performance, are derived. Some intriguing features and their qualitative explanations in zero and non zero magnetic fields are given. The influence of the thermal entanglement on the refrigerator is investigated. The results obtained here have general significance and will be helpful to understand the performance of an entangled quantum refrigerator.  相似文献   

6.
In this work, the thermal quantum correlations in two coupled double semiconductor charge qubits are investigated. This is carried out by deriving analytical expressions for both the thermal concurrence and the correlated coherence. The effects of the tunneling parameters, the Coulomb interaction, and the temperature on the thermal entanglement and on the correlated coherence are studied in detail. It is found that the Coulomb potential plays an important role in the thermal entanglement and in the correlated coherence of the system. The results also indicate that the Coulomb potential can be used for significant enhancement of the thermal entanglement and quantum coherence. One interesting aspect is that the correlated coherence capture all the thermal entanglement at low temperatures, that is, the local coherences are totally transferred to the thermal entanglement. Finally, the role played by thermal entanglement and the correlated coherence responsible for quantum correlations are focused on. It is shown that in all cases, the correlated coherence is more robust than the thermal entanglement so that quantum algorithms based only on correlated coherence may be more robust than those based on entanglement.  相似文献   

7.
赵丽梅  张国锋 《物理学报》2017,66(24):240502-240502
研究了以带有Dzyaloshinski-Mariya(DM)相互作用的两比特自旋体系为工质的量子纠缠Otto热机和量子Stirling热机.两种不同热机在各自的循环过程中,通过保持其他参量不变,只有DM相互作用发生改变,从而分析热机循环中DM相互作用与热传递、做功以及效率等热力学量之间的关系.研究结果表明:DM相互作用对两种热机的基本量子热力学量都具有重要的影响,但量子Stirling热机由于回热器的使用,其循环效率会大于量子Otto纠缠热机的效率,甚至会超过Carnot效率;得到了量子Otto纠缠热机和量子Stirling热机做正功的条件.因此,在这两个纠缠体系中,热力学第二定律都依然成立.  相似文献   

8.
We study a new quantum heat engine (QHE), which is assisted by a Maxwell's demon. The QHE requires three steps: thermalization, quantum measurement, and quantum feedback controlled by the Maxwell demon. We derive the positive-work condition and operation efficiency of this composite QHE. Using controllable superconducting quantum circuits as an example, we show how to construct our QHE. The essential role of the demon is explicitly demonstrated in this macroscopic QHE.  相似文献   

9.
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.  相似文献   

10.

A quantum heat engine (QHE) with a working substance of two-particle \( \left(\frac{1}{2},1\right) \) Heisenberg XXX model with Dzyaloshinskii–Moriya (DM) interaction in the external magnetic field B is studied, and the influences of the DM interaction on the efficiency, work are examined under different coupling strengths. The results show that the QHE can operate and produce positive work and the efficiency on the two magnetic field conditions B1 < B2 and B1 > B2. Moreover, the efficiency can achieve the large value and several interesting effects of the DM interaction on the local work are obtained.

  相似文献   

11.
The inexorable miniaturisation of technologies, the relentless drive to improve efficiency and the enticing prospect of boosting performance through quantum effects are all compelling reasons to investigate microscopic machines. Thermal absorption machines are a particularly interesting class of device that operate autonomously and use only heat flows to perform a useful task. In the quantum regime, this provides a natural setting in which to quantify the thermodynamic cost of various operations such as cooling, timekeeping or entanglement generation. This article presents a pedagogical introduction to the physics of quantum absorption machines, covering refrigerators, engines and clocks in detail.  相似文献   

12.
Jun Chen  Kai-Lun Yao 《Physica A》2012,391(7):2306-2312
The zero- and low-temperature behaviors of spin-1/2 two-leg ladder with staggered dimerization are investigated by the Green’s function theory. At zero temperature, the ground state phase diagram is explored, wherein the leg-dimer and rung-singlet phases are revealed, which reflect two different intrinsic gapped behaviors. The former is attributed to the bond alternation along the legs, while the latter is due to the strong rung coupling. It is found that the quantum phase transition from one to another is of the first order, which can be clearly signaled by the rung entanglement entropy. At finite temperatures, the temperature dependence of thermodynamic quantities such as the magnetic susceptibility, specific heat, thermal Drude weight and rung entanglement entropy are calculated to characterize the corresponding quantum phases. It is shown that the magnetic behaviors clearly manifest a typical antiferromagnetism at low temperature, which is in accordance with the experimental results. It is also found that the intrinsic gapped low-lying excitations are responsible for the observed thermodynamic behaviors.  相似文献   

13.
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equal coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement.  相似文献   

14.
Energy is often partitioned into heat and work by two independent paths corresponding to the change in the eigenenergies or the probability distributions of a quantum system. The discrepancies of the heat and work for various quantum thermodynamic processes have not been well characterized in literature. Here we show how the work in quantum machines is differentially related to the isochoric, isothermal, and adiabatic processes. We prove that the energy exchanges during the quantum isochoric and isothermal processes are simply depending on the change in the eigenenergies or the probability distributions. However, for a time-dependent system in a non-adiabatic quantum evolution, the transitions between the different quantum states representing the quantum coherence can affect the essential thermodynamic properties, and thus the general definitions of the heat and work should be clarified with respect to the microscopic generic time-dependent system. By integrating the coherence effects in the exactly-solvable dynamics of quantum-spin precession, the internal energy is rigorously transferred as the work in the thermodynamic adiabatic process. The present study demonstrates that the quantum adiabatic process is sufficient but not necessary for the thermodynamic adiabatic process.  相似文献   

15.
The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determined by means of the method. We can obtain many new solutions in terms of the Jacobi elliptic functions of the equation.  相似文献   

16.
何弦  何济洲  肖宇玲 《物理学报》2012,61(15):150302-150302
本文提出以两个qubit量子纠缠系统为工质的四能级制冷循环模型, 基于量子热力学第一定律和热纠缠概念, 分析了在循环中系统与外界交换的热量、输入功、制冷系数等热力学参数与量子纠缠之间的关系, 结果表明: 制冷系数等高线图是环状曲线, 随纠缠比r增加而非单调变化; 当相互作用常数J比较小时, 量子制冷机运行区间在c1>c2, 当增加J值时, 制冷机运行区间在c1>c2c1<c2两个区域; 最大制冷系数εmaxJ值增大而增加.  相似文献   

17.
Quantum cycles in established heat engines can be modeled with various quantum systems as working substances. For example, a heat engine can be modeled with an infinite potential well as the working substance to determine the efficiency and work done. However, in this method, the relationship between the quantum observables and the physically measurable parameters—i.e., the efficiency and work done—is not well understood from the quantum mechanics approach. A detailed analysis is needed to link the thermodynamic variables (on which the efficiency and work done depends) with the uncertainty principle for better understanding. Here, we present the connection of the sum uncertainty relation of position and momentum operators with thermodynamic variables in the quantum heat engine model. We are able to determine the upper and lower bounds on the efficiency of the heat engine through the uncertainty relation.  相似文献   

18.
Recent evidence suggests that the multiple charge-separation pathways can contribute to photosynthetic performance.In this work,the influence of coupled-dipoles on photosynthetic performance was investigated in a two-charge separation pathways quantum heat engine(QHE) model.And the population dynamics of the two coupled sites,j-V characteristics,and power involving this photosynthetic QHE model were evaluated for the photosynthetic performance.The results illustrate that the photosynthetic performance can be greatly enhanced but quantum interference is deactivated by the coupleddipoles between the two-charge separation pathways.However,the photosynthetic performance can also be promoted by the deactivated quantum interference owing to the coupled-dipoles.It is a novel role of the coupled-dipoles in the energy transport process of biological photosynthetic,and some artificial strategies may be motivated by this photosynthetic QHE model in the future.  相似文献   

19.
The effect of spontaneously generated coherence (SGC) on the quantum heat engine (QHE) consisting of a laser system is studied in terms of its dynamical evolution and the generation of coherences. The QHE is coupled to the two thermal photon reservoirs, a squeezed thermal bath as well as to a cavity mode. The coherence associated with the transition interacting with squeezed reservoir and the average thermal photon number of the hot (as well as cold) reservoir shows a non monotonous behavior between them. The dynamics along with generated coherences of the system and the laser power emitted depend sensitively on the hot, cold and squeezed reservoir parameters.  相似文献   

20.
We present several examples where prominent quantum properties are transferred from a microscopic superposition to thermal states at high temperatures. Our work is motivated by an analogy of Schr?dinger's cat paradox, where the state corresponding to the virtual cat is a mixed thermal state with a large average photon number. Remarkably, quantum entanglement can be produced between thermal states with nearly the maximum Bell-inequality violation even when the temperatures of both modes approach infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号