首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以硝酸铈和氧化钆为前驱物,采用凝胶浇注工艺合成了钆掺杂氧化铈(Ce0.8Gd0.2O1.9,简称GDC)粉体。然后用流延工艺制备了GDC固体电解质薄膜,采用DTA-TG,XRD,TEM等方法研究了粉体的相形成,粒度等与合成工艺的关系,通过密度测定及显微组织观察等技术研究了流延生坯的烧结性能。借助交流阻抗谱仪对所制备的GDC电解质膜的电导率进行了测量。结果表明,采用本实验的凝胶浇注方法,在700℃温度下煅烧干凝胶,即可制备出纯度高,组成均匀,相结构完整,纳米粒度的GDC粉体。而且所得粉体具有较高的烧结活性,其流延生坯经1450℃烧结后的相对密度可达95%以上,所得GDC电解质膜在700℃空气中的氧离子电导率可达4.6S/m.  相似文献   

2.
利用X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和交流阻抗谱对溶胶-凝胶法制备的稀土双掺杂固溶体Ce0.8Cd0.2-xPrxO1.9(x=0,0.02,0.10)的结构和导电性进行了研究.XRD结果表明,经800℃焙烧所得样品都形成了单相立方萤石结构,平均晶粒尺寸在23~30 nm之间;X...  相似文献   

3.
采用浸渍法制备了Ce0.8La0.2O1.9同溶体负载Pt催化剂,用于气相巴豆醛选择加氧反应中.采用X射线粉末衍射、程序升温还原、NH3程序升温脱附和拉曼光谱等技术对催化剂进行了表征.结果表明,随着Pt负载量增加,Pt/Ce0.8La0.2O1.9催化剂活性(TOF)和巴豆醇选择性均先增加后降低.当Pt负载量为3%时,...  相似文献   

4.
化石燃料的使用排放了大量CO2,对气候和环境造成了日益严重的危害.固体氧化物电解池(SOEC)能够利用可再生能源产生的电能将CO2高效转化成CO,降低CO2排放的同时,又能减少化石燃料的使用,近年来受到研究者的广泛关注.相比于低温液相CO2电还原,SOEC高的运行温度保证了其较高的反应速率,即较高的电流密度.典型的SOEC单电池由多孔阴极、致密电解质和多孔阳极以三明治的方式组装而成.CO2分子在阴极得到两个电子解离成CO和一个O2–;生成的O2–通过致密电解质传导至阳极,在阳极失去四个电子发生析氧反应(OER)生成一个O2.相比于两电子的阴极反应,阳极四电子的析氧反应更难进行,可能是整个电极过程的速控步,因此开发高性能的阳极材料有望显著提高SOEC的CO2电还原性能.La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)因具有较高的混合离子-电子导电性而被用作SOEC阳极材料,但受LSCF-气体两相界面的限制,其OER性能较低.研究表明,LSCF-掺杂的CeO2-气体所构成的三相界面相比于LSCF-气体两相界面具有更高的电化学反应活性,即OER反应更易在三相界面进行.因此,本文将Gd0.2Ce0.8O1.9(GDC)纳米颗粒浸渍到SOEC LSCF阳极来提高其OER活性,考察了纳米颗粒浸渍量(3,5,10和20 wt%)对SOEC电化学性能的影响.结果表明,SOEC的电化学性能随浸渍量的增加而逐渐升高,当GDC纳米颗粒浸渍量为10 wt%时(10GDC/LSCF),SOEC的电化学性能达到最高,在800 oC和1.6 V的电流密度为0.555 A cm–2,是LSCF阳极SOEC性能的1.32倍.继续增加浸渍量到20 wt%,电化学性能反而开始下降.电化学阻抗谱测试结果表明,GDC纳米颗粒的加入减小了SOEC的极化电阻.对应的弛豫时间分布函数解析结果表明10GDC/LSCF阳极上的OER由四个基元反应构成.电镜和O2-程序升温脱附结果表明,GDC纳米颗粒的加入显著增加了10GDC/LSCF阳极三相界面和表面氧空位的数量以及体相氧的流动性,从而促进了OER四个基元反应的反应速率,降低了这几个过程的极化电阻,因而降低了OER反应的极化电阻,提高了SOEC电还原CO2的电化学性能.  相似文献   

5.
以硝酸盐做氧化剂,柠檬酸为燃料,采用低温燃烧法制备纳米级超细Ce0.8Y0.2O1.9 (YDC)固溶体.利用TG-DSC,XRD,SEM,FT-IR和BET等手段对凝胶前驱体的热分解行为、相转化过程和YDC粉体的性能进行表征.TG-DSC结果表明,柠檬酸-硝酸盐干凝胶的点火温度约为263.3℃;经XRD测试,粉体经600℃焙烧即形成了单相立方萤石型结构的固溶体,晶粒度为16 ~23nm.柠檬酸与硝酸盐摩尔比(CA/N)对粉体的微观形貌、比表面积和烧结活性有显著影响.当CA/N为1.5∶1时,粉体粒子间仅有微弱的软团聚,将素坯在1400℃烧结2h,得到相对密度为95.6%,平均粒径约为0.7 μm的陶瓷烧结体.  相似文献   

6.
利用原位红外漫反射技术(DRIFTS)对抗硫中毒催化剂Pt/Ce0.8Gd0.2 O1.9(Pt/CGO)上CO吸附、CO/噻吩共吸附以及CO/H2S顺序吸附进行了研究,并与 Pt/Al2O3催化剂进行了比较. CO吸附实验表明, 1.6%Pt/CGO-800(800 ℃焙烧)上CO的红外特征吸收峰在 2 104 cm-1, 与1.6%Pt/Al2O3-500上CO的红外特征吸收峰(2 070 cm-1)相比,向高波数方向移动了34 cm-1. 1.6%Pt/CGO-600上出现两个CO特征吸收峰,主峰位于 2 108 cm-1, 肩峰位于 2 085 cm-1. C O/噻吩共吸附实验表明,噻吩导致1.6%Pt/CGO-800上CO吸附的红外特征吸收峰红移至 2 090 cm-1, 峰强度略有降低;1.6%Pt/CGO-600上CO的红外特征吸收峰红移至 2 096 cm -1 且强度有所降低,同时肩峰消失. 而1.6%Pt/Al2O3-500上CO的红外特征吸收峰明显减弱并红移至 2 040 cm-1. CO/H2S顺序吸附实验表明, H2S导致Pt/CGO 催化剂在 2 104 和 2 108 cm-1 处的CO特征吸收峰轻微红移,峰强度略有降低,而H2S导致Pt/Al2O3完全丧失CO的吸附能力. 原位DRI FTS表征结果表明, Pt/CGO催化剂上生成的强缺电子特性Pt颗粒具有很强的抗硫中毒能力, 8 00 ℃焙烧有利于生成单一的抗硫中毒的强缺电子Pt金属位,使得1.6%Pt/CGO-800具有最佳的抗硫中毒性能.  相似文献   

7.
采用甘氨酸-硝酸盐法制备了Ce0.8Gd0.2O1.85(GDC82)阳极材料。用TGA-DSC对前驱体物料烧结过程进行分析。用XRD,SEM,直流四探针法,TPR等技术对材料的性能进行表征。前驱体物料经燃烧后,900℃下烧结4 h后,得到单一萤石结构的材料。在50~850℃范围内,GDC82材料在空气气氛下的电导率整体较小,且随温度的升高变化不大,在850℃为0.05 S.cm-1。GDC82在H2气氛下的总电导率整体增加,且随温度的升高而迅速增加,850℃达到0.4 S.cm-1。GDC82与电解质材料La1-xSrxGa1-yMgyO3-δ(LSGM)混合物在1200℃下烧结15 h后,有少量MgCe杂相生成。GDC82与La1-xSrxCr1-yMnyO3-δ(LSCM)阳极材料化学相容性较好。GDC82对氢气和甲烷具有较好的催化氧化效果。  相似文献   

8.
采用溶胶-凝胶法合成SiO2含量为0.05%(w,质量分数)的Ce0.8Nd0.2O1.9(NDC)粉体(NDCSi).分别将0-2.0%(x,摩尔分数)的MgO或FeO1.5添加到NDCSi粉体中,经10MPa压片后于1300°C烧结6h.采用X射线衍射(XRD)、拉曼(Raman)光谱和场发射扫描电子显微镜(FE-SEM)对样品进行结构表征.采用交流(AC)阻抗谱测试样品导电性能.结果表明:所有样品均呈现单一立方萤石结构.MgO或Fe2O3掺杂于NDCSi体系,均可提高材料的致密度,降低烧结温度,提高材料的晶界电导率和总电导率.掺杂MgO或Fe2O3样品的相对密度(>93%)高于NDC或NDCSi(约86%),有效促进了样品致密化.掺杂Fe2O3或MgO的样品(NDCSi+0N.D5FCeSOi样1.5或品总ND电C导Si率+2(.10.M1×g1O0)-具3S有·c最m高-1)电的导5.7率和,525.60倍°C.M时g总O电或导Fe率2O分3掺别杂是于6.N3D×C10S-i3样或品2.对9×晶10界-3电S·导c率m-的1,是影响比晶粒电导率更明显.MgO或Fe2O3掺杂于NDCSi均具有烧结助剂和晶界清除剂的双重作用,但清除杂质SiO2的机制不同.  相似文献   

9.
以柠檬酸和金属硝酸盐为原料,采用凝胶自燃烧法合成了氧化钐掺杂的氧化铈粉体Ce0.8Sm0.2O1.9,利用差热-热重分析仪、X射线衍射仪、扫描电镜等对粉体的形成条件、相组成以及表面形貌进行了表征。该实验能使学生了解固体氧化物燃料电池粉体的基本知识,熟悉柠檬酸盐凝胶自燃烧法制备粉体的原理,了解表征粉体结构的基本方法。  相似文献   

10.
 以柠檬酸溶胶-凝胶法合成的具有萤石结构的Ce0.8Gd0.2O1.9(CGO)复合氧化物为载体,用初湿浸润法制备了负载型Pt催化剂. 纯异辛烷的重整反应结果显示, 600和800 ℃焙烧的催化剂达到了热力学平衡转化, 1000 ℃焙烧会导致Pt的聚集和氧化物的严重烧结,因而催化剂活性较差. 抗硫测试表明, 800 ℃焙烧的催化剂抗硫性能最好,在300 μg/g硫存在下, 100 h内异辛烷均接近完全转化; 在500 μg/g硫存在下催化剂仍表现出良好抗硫性能. 程序升温还原和X射线分析结果显示, 800 ℃焙烧时Pt与CGO载体间的相互作用最强,同时催化剂具有良好的热稳定性,这是催化剂具有抗硫性能并且抗硫作用持久的根本原因. 反应条件下噻吩硫完全转化成H2S, 硫的转化可能是通过氧化-还原机理进行的.  相似文献   

11.
以柠檬酸溶胶-凝胶法、六亚甲基四胺共沉淀法和草酸共沉淀法合成了具有萤石结构的Ce0.8Gd0.2O1.9(CGO)复合氧化物,并用初湿浸润法制备了负载型Pt/CGO催化剂. 纯异辛烷的重整反应结果显示,制得的催化剂均达到了热力学平衡转化. 抗硫测试表明,用柠檬酸溶胶-凝胶法所制载体制备的催化剂具有最好的抗硫中毒性能,在300 ìg穏-1硫存在条件下,100 h内异辛烷均接近完全转化. 用六亚甲基四胺共沉淀法和草酸共沉淀法所制载体制备的催化剂,在相同硫含量条件下,100 h后异辛烷的转化率分别降至~90%和~82%. 这主要是由于二者热稳定性较差和Pt与CGO复合氧化物载体之间相互作用较弱所致. 催化剂储氧量与其抗硫中毒性能并无直接关联. 另外,3种催化剂均具有良好的抗积炭性能.  相似文献   

12.
La2NiO4+δ , 60 wt.% La2NiO4+δ –40 wt.% La0.6Sr0.4Co0.2Fe0.8O3-δ , and 60 wt.% La2NiO4+δ –40 wt.% Ce0.8Sm0.2O1.9 electrodes were prepared from fine powders on dense Ce0.8Sm0.2O1.9 electrolyte substrates by screen-printing technique. Electrochemical impedance spectroscopy and chronopotentiometry techniques were employed to evaluate the electrochemical properties of the composite electrodes in comparison with the La2NiO4+δ electrode. For the three electrodes, main electrode processes were resolved to be charge-transfer at the electrode/electrolyte interface and oxygen exchange on the electrode surface. The contribution of the surface oxygen exchange process was detected to be dominant for the overall electrode polarization. The addition of Ce0.8Sm0.2O1.9 into La2NiO4+δ was favorable for the charge transfer process whereas it was undesired for the surface oxygen exchange process. On comparison, adding La0.6Sr0.4Co0.2Fe0.8O3-δ into La2NiO4+δ was found to benefit both the two electrode processes. The La2NiO4+δ -La0.6Sr0.4Co0.2Fe0.8O3-δ composite electrode showed optimum electrochemical properties among the three electrodes. At 800 °C, the composite electrode achieved a polarization resistance of 0.20 Ω cm2, an overpotential of 45 mV at a current density of 200 mA cm?2, together with an exchange current density of ~200 mA cm?2.  相似文献   

13.
Ba0.95Ce0.8Ho0.2O3-a was prepared by high temperature solid-state reaction. X-ray diffraction (XRD) pattern showed that the material was of a single perovskite-type orthorhombic phase. Using the material as solid electrolyte and porous platinum as electrodes, the measurements of ionic transport number and conductivity of Ba0.95Ce0.8Ho0.2O3-a were performed by gas concentration cell and ac impedance spectroscopy methods in the temperature range of 600---1000 ℃in wet hydrogen, dry and wet air respectively. Ionic conduction of the material was investigated and compared with that of BaCe0.8Ho0.2O3-a. The results indicated that Ba0.95Ce0.8Ho0.2O3-a was a pure protonic conductor with the protonic transport number of 1 during 600---700℃ in wet hydrogen, a mixed conductor of protons and electrons with the protonic transport number of 0.97--0.93 in 800---1000 ℃. But BaCe0.8Ho0.2O3-a was almost a pure protonic conductor with the protonic transport number of 1 in 600---900 ℃ and 0.99 at 1000 ℃ in wet hydrogen. In dry air and in the temperature range of 600---1000 ℃, they were both mixed conductors of oxide ions and electronic holes, and the oxide-ionic transport numbers were 0.24--0.33 and 0.17--0.30 respectively. In wet air and in the temperature range of 600---1000 ℃, they were both mixed conductors of protons, oxide ions and electronic holes, the protonic transport numbers were 0.11--0.00 and 0.09--0.01 respectively, and the oxide-ionic transport numbers were 0.41--0.33 and 0.27--0.30 respectively. Protonic conductivity of Ba0.95Ce0.8Ho0.2O3-a in both wet hydrogen and wet air was higher than that of BaCe0.8Ho0.2O3-a in 600--- 800 ℃, but lower in 900--1000 ℃. Oxide-ionic conductivity of the material was higher than that of BaCe0.8Ho0.2O3-a in both dry air and wet air in 600---1000 ℃.  相似文献   

14.
Journal of Solid State Electrochemistry - The dual-phase composites are obtained by mixing perovskite-like cobaltite Pr0.9Y0.1BaCo2O6–δ and samarium-doped ceria Ce0.8Sm0.2O1.9 in weight...  相似文献   

15.
采用溶胶-凝胶法分别制备La0.95Sr0.05Ga0.9Mg0.1O3-δ (LSGM)和Ce0.8Nd0.2O1.9 (NDC)电解质,并在NDC溶胶中加入0-15% (w,质量分数)的LSGM预烧粉体制得NDC-LSGM复合电解质,研究不同质量比复合电解质的结构和电性能. 采用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和X能量色散谱仪(EDS)对样品进行结构表征,交流(AC)阻抗谱测试样品导电性能. 结果表明:NDC-LSGM复合体系主要由立方萤石结构相、钙钛矿结构相和杂质相组成;LSGM的添加可促进晶粒的生长,产生大量相界面,清除或降低SiO2有害影响,明显提高晶界导电性;LSGM质量分数为10%的样品NL10 具有最高晶界电导率和总电导率,400 ℃时NL10 的晶界电导率σgb和总电导率σt分别为12.15×10-4和3.49×10-4 S·cm-1,与NDC的σgb (1.41×10-4 S·cm-1)和σt (1.20×10-4 S·cm-1)相比分别提高了7.62和1.91倍,总电导率的提高主要归因于晶界电导率的影响.  相似文献   

16.
采用固相合成法制备了La0.8Sr0.2Ga0.8Mg0.2O3(LSGM8282)和La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 (LSGMC5), 利用四电极交流阻抗法和Hebb-Wagner 极化法对比研究了两种材料的总电导率和电子电导率. 实验结果表明, LSGM8282 的总电导率与氧分压无明显依赖关系, 而LSGMC5 的总电导率在高氧分压区随氧分压降低而增加,在中等氧分压区域基本保持不变. 在973-1173 K的温度范围内, LSGM8282的自由电子电导率以及电子空穴电导率的氧分压级数分别为-1/4和1/4.在1073-1173 K的温度范围内, LSGMC5的自由电子电导率以及电子空穴电导率的氧分压级数分别为-1/4和约为1/8, 表明LSGMC5的空穴产生机制可能与LSGM8282不同. LSGM8282 的氧离子电导率与氧分压无关, 而LSGMC5 的氧离子电导率在高氧分压区随氧分压的减小而增加.  相似文献   

17.
利用溶胶-凝胶方法合成了Ce0.8Pr0.2O2-δ固溶体, XRD结果表明,经200 ℃焙烧就已经形成立方萤石结构固溶体,晶粒尺寸为8.1 nm, 随焙烧温度的升高,晶粒尺寸增大. X射线光电子能谱(XPS)结果表明,样品中存在氧离子缺位,铈离子主要为Ce4 离子,镨离子以混合价态Pr3 和Pr4 存在. 固溶体Ce0.8Pr0.2O2-δ的拉曼谱(Raman)观察到4个峰,458和1140 cm-1峰为特征F2g振动谱带,较宽的570和187 cm-1峰对应氧离子缺位及引起的不对称振动. 交流阻抗谱表明固溶体Ce0.8Pr0.2O2-δ在600 ℃时的电导率为1.44×10-3 S·cm-1, 活化能为Ea=0.67 eV (650~800 ℃), Ea=0.91 eV (400~600 ℃).  相似文献   

18.
采用溶胶-凝胶法合成了Nd0.6-xBaxSr0.4Co0.2Fe0.8O3-δ(NBSCF)阴极粉体和Ce0.9Gd0.1O1.95(GDC)电解质粉体.利用X射线衍射仪(XRD)、电子能谱仪(XPS)分别对NBSCF的结构及其与GDC的化学相容性、NBSCF表面的化学状态进行表征.用直流四端子法和交流阻抗谱法分别测...  相似文献   

19.
纳米晶固溶体Ce0.8Nd0.2O2-δ的合成与表征   总被引:6,自引:0,他引:6  
利用溶胶 -凝胶法合成纳米晶固溶体 Ce0 .8Nd0 .2 O2 -δ.XRD测试表明 ,胶体经 2 0 0℃烧结处理就可以得到晶粒尺寸为 7.2 nm的纳米晶 ,随烧结温度的升高 ,晶粒尺寸增大 .EPR测试给出固溶体 Ce0 .8Nd0 .2 O2 -δ存在少量的 Ce3 +离子 .在纳米晶固溶体 Ce0 .8Nd0 .2 O2 -δ的 Raman光谱上观察到两个峰 ,低频的强峰为特征F2 g振动谱带 ,高频谱带的出现与样品中存在氧缺位有关 .固溶体晶粒尺寸的减小不但使 F2 g振动谱带红移 ,而且谱带明显宽化 .复阻抗谱的测量表明 ,固溶体 Ce0 .8Nd0 .2 O2 -δ具有氧离子导电特性 .4 0 0和 50 0℃时的电导率分别为 4 .55× 1 0 -4 和 2 .65× 1 0 -3 S· cm-1,活化能为 0 .82 e V  相似文献   

20.
采用高温固相反应法制备了非化学计量组成的Ba1.03Ce0.8 Ho0.2O3-α 固体电解质,用XRD和SEM对其相组成和表面及断面形貌进行了表征。用气体浓差电池方法测定了材料在600~1000 ℃温度范围内,干燥空气、湿润空气和湿润氢气气氛中的离子迁移数;用交流阻抗谱技术测定了它们在各实验气氛中的电导率。研究了材料的离子导电特性,并与BaCe0.8Ho0.2O3-α 和Ba0.97Ce0.8Ho0.2O3-α 的性能进行了比较。结果表明:该材料为单相钙钛矿型斜方晶结构。在600~1000 ℃温度范围内、干燥空气中,是氧离子与电子空穴的混合导体,氧离子迁移数为0.10~0.36;在湿润空气中,是质子、氧离子与电子空穴的混合导体,质子迁移数为0.11~0.01,氧离子迁移数为0.34~0.30;在湿润氢气气氛中,是纯质子导体,质子迁移数为1。在600~1000 ℃温度范围内,干燥空气、湿润空气和湿润氢气气氛中,非化学计量组成材料(x = 1.03,0.97)的电导率高于化学计量组成材料(x = 1)的电导率,其中,Ba1.03Ce0.8 Ho0.2O3-α的电导率最高 (1000 ℃时、在干燥空气气氛中:3.92×10-2 S·cm-1;在湿润空气气氛中:3.46×10-2 S·cm-1;在湿润氢气气氛中:2.10×10-2 S·cm-1)。Ba1.03Ce0.8 Ho0.2O3-α材料的离子导电性优于BaCe0.8Ho0.2O3-α 和Ba0.97Ce0.8Ho0.2O3-α。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号