首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用膜乳化-液中干燥法成功制备出粒径为2~20μm的单分散聚苯乙烯(PS)微球.PS微球的粒径主要由膜孔径决定,其值约为膜孔径的2倍;PS溶液的浓度对其也有一定的影响.膜乳化过程中的压力对微球粒径的分散性有很大的影响,在一定压力范围内,粒径呈单分散.在分散相中加入致孔剂,制备出表面多孔的PS微球.采用复乳-液中干燥法制备出中空PS微球.  相似文献   

2.
离子凝聚法制备负载流感疫苗的壳聚糖微球   总被引:2,自引:1,他引:1  
采用三聚磷酸钠(TPP)作为离子交联剂, 应用离子凝聚法制备负载流感疫苗的壳聚糖微球. 筛选出壳聚糖起始质量分数为1%. TPP的浓度对壳聚糖微球的制备影响较大, 采用低浓度的TPP(200 μg/mL)制备的微球放置过夜均出现沉淀现象, 高浓度的TPP(800 μg/mL)在制备过程中出现絮状沉淀. 固化比影响微球的释放行为, 固化比为1∶1的微球爆炸式释放率达到90%, 固化比为1∶3的微球6 h后逐步释放, 12 h后释放率达到95%. 固化比为1∶5的微球6 h后没有明显的释放行为. 壳聚糖溶液的pH对微球的制备和释放没有显著的影响. 通过对负载流感疫苗的壳聚糖微球的制备条件和释放行为的研究结果表明, pH=5.6的壳聚糖溶液, 固化比为1∶3, TPP的质量浓度为400 μg/mL是较理想的流感疫苗壳聚糖微球的制备条件.  相似文献   

3.
采用高内水相双重乳液模板法制备贯通多孔聚合物微球,并将其应用于催化剂负载和Cu2+吸附.首先,通过增加水相,使单一小分子表面活性剂12-丙烯酰氧-9-油酸(AOA)稳定的反相高内相乳液(W/O HIPEs)发生相转变,一步制备出高内水相双重乳液;然后以此为模板,采用辐射法和引发剂引发聚合两种方式制备聚(苯乙烯-二甲基丙烯酸乙二醇酯)微球.通过扫描电镜观察发现,采用辐射法聚合能够得到贯通多孔的聚合物微球,而化学法聚合只能得到中空的封闭微球.将贯通多孔微球水解使其羧基化,用于铜离子的吸附.结果表明水解后多孔微球对Cu2+的吸附量随p H值的增加先增后减,在p H=5时达到最高值175 mg/g(2.75 mmol/g).此外,利用原位生成的方式,在贯通多孔微球上负载Pd纳米粒子,并将其用于催化肉桂醛加氢反应.结果表明水解多孔微球比未水解多孔微球具有更高的催化效率;热重分析和透射电子显微镜观察显示,水解多孔微球比未水解多孔微球能够负载更多的Pd纳米粒子,且纳米粒子分散更均匀.  相似文献   

4.
采用一步法成功制备出多孔氧化铜空心微球,用SEM、XRD和FTIR对制得的样品进行了表征。研究发现,碳源、反应温度、反应时间、CuSO4浓度等实验条件在多孔微球的制备过程中起着重要作用。在实验结果的基础上,提出了多孔氧化铜空心微球的形成机理。制备的多孔氧化铜空心微球的比表面积为409 m2.g-1,平均孔径为3.15 nm,总孔体积为0.256 cm3.g-1,这种空心微球具有量子尺寸效应并对罗丹明B有较高的光催化性能。  相似文献   

5.
首先通过乳液聚合和浓硫酸酸化制备表面富含磺酸根的磺化聚苯乙烯(PS)微球(直径532 nm),再用其静电吸附[Ag(NH_3)_2]~+离子,最后采用聚乙烯吡咯烷酮还原表面吸附的[Ag(NH_3)_2]~+离子,得到了负载银纳米粒子的PS/AgNPs复合微球.采用扫描电子显微镜、透射电子显微镜、紫外-可见光谱、红外光谱和X射线衍射表征了PS/AgNPs复合微球,并考察了其对甲基蓝(MB)的催化性能.结果表明,Ag纳米粒子高度分散在磺化PS微球表面;该PS/AgNPs复合微球对催化转化MB有较高的催化活性,并可多次重复利用.本研究在催化降解有机污染物方面有一定的实用价值.  相似文献   

6.
特殊形态聚合物微球原位负载Ag纳米粒子   总被引:1,自引:1,他引:0  
以苯乙烯单封端的聚N-异丙基丙烯酰胺(St-PNIPAAm)大分子单体为反应性分散稳定剂,使之与丙烯腈(AN)和少量苯乙烯(St)在醇/水混合介质中进行三元分散共聚反应,制得了以聚苯乙烯(PS)为核,表面接枝PNIPAAm的聚合物微球(PNIPAAm-g-PAN/PS).利用扫描电子显微镜(SEM)观察证实:所得聚合物微球的粒径和表面凸起均一,形态结构规整,其粒径和形态可通过改变聚合反应条件加以控制.以典型配方的聚合物微球为媒介,AgNO3为金属源,乙醇为还原剂,在90 ℃下使Ag纳米粒子原位负载在PNIPAAm-g-PAN/PS聚合物微球表面.利用透射电子显微镜(TEM),紫外光谱(UV)及傅立叶红外光谱(FT-IR)对表面负载Ag纳米粒子的聚合物微球样品进行了表征,结果表明:Ag纳米粒子在特殊形态聚合物微球表面负载均匀,通过改变银离子的用量可将Ag纳米粒子的大小控制在3~32 nm范围内,最小平均粒径约为6 nm.  相似文献   

7.
通过分散聚合法制备了单分散性好,粒径均一的聚苯乙烯(PS)微球.以PS微球为核,用浓硫酸进行表面改性,使其表面带有负电.加入一定量的[Ag(NH3)2]+溶液,由于静电吸引,使其吸附在PS微球表面,通过化学还原的方法制备了PS/Ag核/壳结构复合微球.采用透射电镜(TEM)、扫描电镜(SEM)、红外光谱(IR)、X射线衍射(XRD)以及紫外-可见光谱对PS/Ag复合微球进行表征.结果表明:通过PS微球的表面改性,在其表面引入了磺酸基团,提高了微球表面的电负性和亲水性,对包覆过程起到了很好的促进作用;通过稳定剂(PVP)和不同还原剂(一缩二乙二醇DEG和乙二醇EG)的使用,形成的PS/Ag核/壳复合微球形貌不一样,同时研究表明制备出的PS/Ag复合微球可以用于催化剂催化还原有机染料溶液,表现出很好的催化活性.  相似文献   

8.
摘要 采用喷雾干燥法制备包载地塞米松(Dex)的聚L-丙交酯-b-聚乙二醇(PLLA-PEG)微球, 以热致相分离/粒子洗去法制备聚乙交酯-co-丙交酯(PLGA)多孔支架, 通过复合溶结法将载药微球固定于PLGA多孔支架中, 制得载药微球-支架(记为MS-S). 另外, 在支架制备过程中将Dex直接加入PLGA溶液中, 制得对比的直接载药支架(记为D-S). 以扫描电镜观察微球和支架的微观形貌, 在循环压应力与水浴摇床两种环境下分别对上述两种载药支架进行控制释放Dex的实验, 用紫外-可见光分光光度计测定Dex的累积释放量. 结果表明, Dex及微球的载入对PLGA支架的整体形貌影响较小; 循环压应力显著提高了Dex从载药支架中的释放速率, 与D-S相比, MS-S延缓了药物的释放. 研究模拟体内循环压应力下支架控制释放药物规律对于实现理想的临床效果具有重要意义.  相似文献   

9.
采用一种简单和低成本的方法制备单分散SiO2包覆聚苯乙烯(PS)(PS/SiO2)核-壳型纳米复合微球.首先在聚乙烯吡咯烷酮(PVP)存在下制备了PS纳米微球,然后在NH4OH/乙醇溶液中通过溶胶-凝胶过程在PS微球表面包覆SiO2.PS纳米微球的制备在水介质中进行,无需使用共单体,使用的是常用的过硫酸钾自由基引发剂;包覆处理前不用进行溶剂交换或离心处理.研究了PVP,NH4OH和原硅酸乙酯(TEOS)的用量对PS/SiO2纳米复合微球尺寸和形态的影响.随着PVP用量增加,PS微球变小,因此得到较小的PS/SiO2纳米复合微球;NH4OH用量对SiO2包覆层的厚度没有影响,但对SiO2包覆层的表面形态有影响,随着NH4OH用量增加包覆层表面变得粗糙;随着TEOS溶液用量增加,生成的SiO2增加,其包覆层的厚度增加.  相似文献   

10.
将柠檬酸和直链烷基胺混合后热解,制备了烷基胺功能化的双亲性石墨烯量子点。研究结果表明,烷基碳链长度对石墨烯量子点的表面活性有较大影响。采用十二烷基胺为功能试剂时,石墨烯量子点的表面张力降低到30. 8 mN/m,与典型的阴离子表面活性剂十二烷基苯磺酸钠相当。此双亲性石墨烯量子点被用作固体粒子表面活性剂稳定L-薄荷醇/水Pickering乳液时,所形成的乳液具有较高的稳定性,液滴平均粒径为10μm。该乳液冷却至室温后析出结晶,将晶体过滤、干燥后得到负载L-薄荷醇的石墨烯量子点。采用热风吹扫方式研究石墨烯量子点对L-薄荷醇的缓释行为。在80℃下,负载型样品完全释放薄荷醇所需要的时间分别为混合型样品和空白样品的4. 6倍与9. 2倍,表明石墨烯量子点对L-薄荷醇具有明显的缓释作用。  相似文献   

11.
以分散聚合法制备的微米级聚苯乙烯(PS)微球为模板、3,4-乙烯二氧噻吩(EDOT)为单体、过硫酸铵(APS)为引发剂,通过氧化聚合制备了PS-PEDOT核壳型复合导电微球。采用扫描电镜、透射电镜等对导电微球的形貌和结构进行了表征,重点采用拉曼光谱研究了其核壳结构特征。并研究了超声分散、溶液pH以及单体配比对导电微球形貌的影响。实验结果表明:超声的引入可提高导电微球的单分散性,改善微球的形貌。随着pH的降低或单体配比的增加,导电聚合物在PS微球表面的负载量随之增加,当m(EDOT)/m(PS)由0.60增加到1.25时,导电微球的平均粒径由1.76μm增加到1.91μm。  相似文献   

12.
多重响应性介孔二氧化硅纳米微球的制备及载药研究   总被引:2,自引:0,他引:2  
采用溶胶凝胶法制备了以油酸稳定的Fe3O4为核, 十六烷基三甲基溴化铵(CTAB)为模板剂的磁响应性的介孔二氧化硅纳米微球; 通过孔道内修饰羧基和巯基, 链转移反应修饰线性的聚(N-异丙基丙烯酰胺-co-N-羟甲基丙烯酰胺)共聚物得到多重响应性的介孔二氧化硅纳米微球P(NIPAM-co-NHMA)@M-MSN(-COOH). 利用Brunauer-Emmett-Teller (BET)、振动样品磁强计(VSM)、透射电子显微镜(TEM)、紫外光谱(UV/Vis)表征了微球的物理化学性质. 阿霉素(DOX)被用作模型药物研究了这种多重响应性的介孔二氧化硅纳米微球作为药物载体的载药及药物释放行为, 结果显示这种纳米微球载药率高达48%, 药物释放呈现对温度和pH的双重响应性, 可以实现对药物的控制释放.  相似文献   

13.
不同溶剂制备的聚乳酸多孔微球的形成机理   总被引:1,自引:0,他引:1  
利用改进的双乳液溶剂挥发法制备了多孔聚乳酸( PLA)微球.通过采用具有不同沸点和水溶性的有机溶剂制备得到不同多孔结构的PLA微球.结果发现以二氯甲烷、氯仿和甲苯为溶剂制备的微球具有相似的均匀多孔结构,而以乙酸乙酯制备的微球却具有中空结构和多孔的壳层.通过进一步的实验研究了溶剂种类对于微球多孔结构的影响.结果表明溶剂的...  相似文献   

14.
为研究抗肿瘤药物与辅药负载于同一药物载体的作用效果, 首先以壳寡糖和广谱抗肿瘤药物5-氟尿嘧啶(5-Fu)为原料通过化学键合合成氟尿嘧啶-壳寡糖前体, 然后以其为模板通过溶胶-凝胶法制备了同时负载氟尿嘧啶和硒纳米颗粒的壳寡糖微球. 采用透射电子显微镜(TEM)、 Zeta电位仪和红外光谱(IR)对制备的微球进行了表征, 结果表明, 微球粒径为433 nm, 硒纳米颗粒包裹在微球内; 对微球包裹药物进行检测发现, 5-Fu装载率为(8.2±0.3)%, 硒装载率为(7.96±0.34)%; 体外缓释检测和细胞实验结果证实, 微球能够缓慢释放2种药物, 其缓释作用能很好地抑制肝癌细胞SMMC-7721的生长.  相似文献   

15.
以超高分子量聚乙烯作为原料, 在超临界二氧化碳中通过热处理成功制备了聚合物微米球. 微球尺寸符合高斯分布, 并可以控制在较窄范围内, 微球表面多孔且内部中空. 微球的形成是恒温过程和超临界二氧化碳双重作用的结果. 降温过程导致聚合物溶解度降低, 超高分子量聚乙烯分子链析出结晶而形成微球, 内部包裹了少量二氧化碳; 温度进一步降低导致微球内外压力不平衡, 二氧化碳从空心球内部释放形成表面孔洞. 恒温结晶过程除了促使微球结晶度进一步提高外, 还可以使亚稳晶型单斜晶转化为稳定的正交晶.  相似文献   

16.
单分散PS/PAA聚合物微球的研制   总被引:2,自引:0,他引:2  
以苯乙烯为单体,采用分散聚合法制备了单分散性的聚苯乙烯(PS)微球,然后以PS微球作为种子、丙烯酸(AA)进行无皂种子乳液聚合制备了PS/PAA微球。考察了单体、引发剂、分散剂用量,反应介质极性和交链剂等因素对微球粒径大小及其分布的影响,探讨了分散聚合的反应机理。结果表明,通过改变反应工艺条件,能够制备粒径为1.0~3.0μm、单分散性很好的PS微球;通过无皂种子乳液聚合得到的核壳结构的PS/PAA微球粒径为2.50μm,多分散系数(PI)为0.0325,酸值为10.27mgNaOH/g,其表面带有羧基的特性能进一步扩大应用范围。  相似文献   

17.
中孔聚合物微球, 由于具有大的比表面积、小的孔径和孔容, 并有与外界环境介质相通的多孔孔道等特点而被应用于化妆品活性物和药物的缓释载体, 以提高药物及化妆品活性物的安全性和使用效率. 在早期的工作中, 我们报道了聚苯乙烯-二乙烯苯[P(St- DVB)]多孔聚合物微球的制备及其在化妆品活性物缓释中的应用[4]. [P(St-DVB)]多孔聚合物微球用于化妆品活性物的负载取得了较好的缓释效果, 但是此种多孔聚合物微球在负载如Pasorl-1789类易光解的活性组分时, 由于聚合物本身的透明性, 当在紫外线等强光照射下, 易光解的活性物就会发生分解, 最终导致失去活性作用, 因此纯的聚合物微球对易光解的活性物起不到良好的保护和缓释. 纳米二氧化钛由于具有良好的紫外吸收和折射能力及无毒等优点而广泛地应用于化妆品的物理防晒剂. 因此, 将纳米二氧化钛均匀地覆盖在多孔聚合物微球的表面可以在聚合物微球表面形成一道阻挡紫外线的屏障, 有效防止负载于多孔聚合微球内部的活性物的分解. 本文通过开环反应方法制备了二氧化钛接枝聚(苯乙烯-二乙烯苯)/马来酸酐中孔复合微球. 首先用氨基基团对纳米二氧化钛粒子表面进行修饰, 一方面防止其团聚, 另一方面使纳米粒子具有与聚合物微球产生共价键合的基团. 然后对多孔聚合物粒子表面进行马来酸酐修饰, 使其在保持原有的多孔形貌的基础上产生可与纳米粒子表面氨基开环反应的马来酸酐基团. 制得的多孔纳米复合微球经红外光谱、扫描电镜、透射电镜、X光衍射能谱及紫外分光光度计等表征, 结果表明, 纳米复合微球表面均匀地覆盖了纳米二氧化钛粒子, 复合粒子比纯聚合物粒子和未经修饰的二氧化钛粒子具有更好的紫外吸收效果. 将制得的复合微球用于对活性物Parsol 1789 (一种化妆品活性组分, 见光易氧化)的负载和缓释结果表明, 纳米复合多孔微球对负载于多孔网络中的活性物具有屏蔽紫外防止氧化和缓释作用.  相似文献   

18.
采用电化学腐蚀法在硅基片表面形成多孔硅, 利用直流对靶反应磁控溅射方法在不同电流密度条件下制备的多孔硅样品表面上溅射沉积了VOx薄膜, 获得了氧化钒/多孔硅/硅(VOx/PS/Si)结构. 采用场发射扫描电镜(FESEM)观测多孔硅及VOx/PS/Si结构的微观形貌, 采用纳米压痕仪器测量VOx/PS/Si结构的纳米力学特性, 通过电阻-功率曲线分析研究其温度敏感特性. 实验结果表明, 在40和80 mA·cm-2电流密度下制备多孔硅的平均孔径分别为18和24 nm, 用显微拉曼光谱法(MRS)测量其热导率分别为3.282和1.278 kW·K-1; VOx/PS/Si结构的电阻随功率变化的平均速率分别为60×109和100×109 Ω·W-1, VOx/PS/Si结构的显微硬度分别为1.917和0.928 GPa. 实验结果表明, 多孔硅的微观形貌对VOx/PS/Si结构的纳米力学及温敏特性有很大的影响, 大孔隙率多孔硅基底上制备的VOx/PS/Si 结构比小孔隙率多孔硅基底上制备的具有更高的温度灵敏度, 但其机械稳定性也随之下降.  相似文献   

19.
以聚苯乙烯(PS)微球为硬模板,制备中空介孔二氧化硅纳米微球(HMSs),通过在其表面安装双稳态准轮烷分子作为超分子纳米阀门,实现对缓蚀剂分子苯骈三氮唑(BTA)的酸/碱双刺激的响应释放功效.采用透射电子显微镜(TEM)、X射线衍射(XRD)和比表面积分析等手段表征了HMSs的形貌和结构,使用傅里叶红外光谱(FTIR)和热重分析(TGA)验证了HMSs表面功能化过程,利用紫外-可见分光光度计(UV-Vis)实时监测缓蚀剂分子在不同pH值下的释放过程.实验结果表明,合成的HMSs呈单分散,比表面积为1141.16 m2/g.利用超分子自组装技术制得的智能纳米容器实现了在中性条件下"零释放",而在酸性或碱性条件下大量释放的效果.  相似文献   

20.
中孔聚合物微球,由于具有大的比表面积、小的孔径和孔容,并有与外界环境介质相通的多孔孔道等特点而被应用于化妆品活性物和药物的缓释载体,以提高药物及化妆品活性物的安全性和使用效率.在早期的工作中,我们报道了聚苯乙烯-二乙烯苯[P(St-DVB)]多孔聚合物微球的制备及其在化妆品活性物缓释中的应用[4].[P(St-DVB)]多孔聚合物微球用于化妆品活性物的负载取得了较好的缓释效果,但是此种多孔聚合物微球在负载如Pasorl-1789类易光解的活性组分时,由于聚合物本身的透明性,当在紫外线等强光照射下,易光解的活性物就会发生分解,最终导致失去活性作用,因此纯的聚合物微球对易光解的活性物起不到良好的保护和缓释.纳米二氧化钛由于具有良好的紫外吸收和折射能力及无毒等优点而广泛地应用于化妆品的物理防晒剂.因此,将纳米二氧化钛均匀地覆盖在多孔聚合物微球的表面可以在聚合物微球表面形成一道阻挡紫外线的屏障,有效防止负载于多孔聚合微球内部的活性物的分解.本文通过开环反应方法制备了二氧化钛接枝聚(苯乙烯-二乙烯苯)/马来酸酐中孔复合微球.首先用氨基基团对纳米二氧化钛粒子表面进行修饰,一方面防止其团聚,另一方面使纳米粒子具有与聚合物微球产生共价键合的基团.然后对多孔聚合物粒子表面进行马来酸酐修饰,使其在保持原有的多孔形貌的基础上产生可与纳米粒子表面氨基开环反应的马来酸酐基团.制得的多孔纳米复合微球经红外光谱、扫描电镜、透射电镜、X光衍射能谱及紫外分光光度计等表征,结果表明,纳米复合微球表面均匀地覆盖了纳米二氧化钛粒子,复合粒子比纯聚合物粒子和未经修饰的二氧化钛粒子具有更好的紫外吸收效果.将制得的复合微球用于对活性物Parsol1789(一种化妆品活性组分,见光易氧化)的负载和缓释结果表明,纳米复合多孔微球对负载于多孔网络中的活性物具有屏蔽紫外防止氧化和缓释作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号