首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计合成融合表达标签谷胱甘肽S-转移酶(GST)的二价亲和标记试剂,用于功能化磁珠后位点选择性固定化标签GST,为磁分离筛选配体混合物库提供固定化融合靶蛋白的候选方案。 为减少疏水配体在标签GST活性位点的结合,需同时占据标签GST双活性中心内疏水结合位点并发生共价修饰的二价亲和标记试剂。以双苯环为疏水定位基、溴乙酰基为巯基修饰基团、羧基为连接官能团得单价标记试剂,以二乙基三胺为连接臂将单价标记试剂与连接臂两端伯胺连接得标签GST的对称二价亲和标记试剂,再以线性三胺连接臂中间的氨基与羧基磁珠偶联得功能化磁珠。 表征目标化合物对标签GST的标记动力学、结合比;功能化磁珠对标签GST的不可逆固定化动力学和固载容量,及将磁珠表面二价亲和标记试剂转变成还原型谷胱甘肽(GSH)加合物后对标签GST可逆固定化的效果;以碱性磷酸酶及疏水荧光配体为模型考察磁珠固定化标签GST后的非特异结合。 目标化合物对标签GST半抑制浓度为(22±0.2) μmol/L,其与GSH的饱和加合物半抑制浓度为(0.41±0.06) μmol/L,二者与标签GST二聚体结合比接近1:1。 功能化磁珠对标签GST不可逆及可逆固定化的容量均接近25 mg/g磁珠。 偶联GST的磁珠对蛋白非特异吸附很弱,再进一步用单价亲和标记试剂和GSH加合物封闭固定化标签GST剩余的活性位点后对疏水小分子也无显著结合。 结果表明,所设计二价亲和标记试剂功能化磁珠适合用于标签GST及其融合表达蛋白的位点选择性固定化。  相似文献   

2.
Casein is well known as a good protein emulsifier and beta-casein is the major component of casein and commercial sodium caseinate. Dye affinity adsorption is increasingly used for protein separation. beta-Casein adsorption onto Reactive Red 120 attached magnetic poly(2-hydroxyethyl methacrylate) (m-PHEMA) beads was investigated in this work. m-PHEMA beads (80-120 microm in diameter) were produced by dispersion polymerization. The dichlorotriazine dye Reactive Red 120 was attached covalently as a ligand. The dye attached beads, having a swelling ratio of 55% (w/w) and carrying different amounts of Reactive Red 120 (9.2 micromol . g(-1)-39.8 micromol . g(-1)), were used in beta-casein adsorption studies. The effects of the initial concentration, pH, ionic strength and temperature on the adsorption efficiency of dye attached beads were studied in a batch reactor. The non-specific adsorption on the m-PHEMA beads was 1.4 mg . g(-1). Reactive Red 120 attachment significantly increased the beta-casein adsorption up to 37.3 mg . g(-1). More than 95.4% of the adsorbed beta-casein was desorbed in 1 h in a desorption medium containing 1.0 M KSCN at pH 8.0. We concluded that Reactive Red 120 attached m-PHEMA beads can be applied for beta-casein adsorption without significant losses in the adsorption capacities.  相似文献   

3.
Magnetic biospecific affinity adsorbents for immunoglobulin and enzyme isolation have been prepared. They were obtained by a “ post-magnetization” procedure involving a simple treatment of the various affinity gels with magnetic ferrofluid. The magnetic biospecific adsorbents tested include magnetic protein A-Sepharose for isolation of IgG antibodies, magnetic human serum albumin (HSA)-Sepharose for anti-HSA isolation, and magnetic 2′,5′-ADP for isolation of glucose-6-phosphate dehydrogenase from baker’s yeast and hemolyzates of human red blood cells. For the latter enzyme, a 11,000-fold purification was achieved in one step.  相似文献   

4.
Magnetic solids in analytical chemistry: A review   总被引:2,自引:0,他引:2  
Magnetic solids are widely used in detection and analytical systems because of the performance advantages they offer compared to similar solids that lack magnetic properties. These solids can be used to pre-concentrate analytes and for the magnetic separation and molecular identification of biomolecules, and organic and inorganic species. Magnetic solid separation techniques also offer benefits over centrifugation, filtration, and solid-phase extraction. In this review, we describe the synthesis, characterization and applications of a series of solids including silica supports, carbon nanotubes, alumina, organic polymers and other materials, mostly containing magnetite or paramagnetic metals. Also addressed are the future perspectives of magnetic solid applications.  相似文献   

5.
A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects’ capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance. Thus, the capturing ability is limited by the objects’ magnetic properties, size, and flow rate. Despite the importance of a thorough investigation of this process to prove the concept of magnetically controlled drug delivery, it has not been sufficiently investigated. Here, we studied the efficiency of polyelectrolyte capsules’ capture by the external magnetic field source depending on their size, the magnetic nanoparticle payload, and the suspension’s flow rate. Additionally, we estimated the possibility of magnetically trapping cells containing magnetic capsules in flow and evaluated cells’ membrane integrity after that. These results are required to prove the possibility of the magnetically controlled delivery of the encapsulated medicine to the affected area with its subsequent retention, as well as the capability to capture magnetically labeled cells in flow.  相似文献   

6.
Bioaffinity separation has a unique and powerful role as a support tool in the removal of toxic substances from human plasma. Magnetic beads have advantages as supports in comparison to conventional nonmagnetic beads because of low pressure drop, high mass transfer rates, and good fluid‐solid contact. In addition, they eliminate internal diffusion limitations. Human serum albumin (HSA) immobilised onto magnetic poly(2‐hydroxyethyl methacrylate) (mPHEMA) beads were investigated as an adsorbent for the selective bilirubin removal from human plasma. The mPHEMA beads were prepared by a modified suspension polymerisation. HSA was covalently coupled to the mPHEMA beads. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the mPHEMA beads containing different amounts of immobilised HSA, (between 11–100 mg/g). The nonspecific bilirubin adsorption on the unmodified mPHEMA beads was 0.47 mg/g. Higher bilirubin adsorption capacities, up to 64.7 mg/g, were obtained with the HSA‐immobilised magnetic beads. Bilirubin adsorption increased with increasing temperature.

Effect of HSA loading on bilirubin adsorption.  相似文献   


7.
A simple and efficient method based on magnetic‐bead technology has been developed for the enrichment of thiol‐containing biomolecules, such as l ‐glutathione and cysteine‐containing peptides. The thiol‐binding site on the bead is a mononuclear complex of zinc(II) with 1,4,7,10‐tetraazacyclododecane (cyclen); this is linked to a hydrophilic cross‐linked agarose coating on a particle that has a magnetic core. All steps for the thiol‐affinity separation are conducted in aqueous buffers with 0.10 mL of the magnetic beads in a 1.5 mL microtube. The entire separation protocol for thiol‐containing compounds, from addition to elution, requires less than one hour per sample, provided the buffers and the zinc(II)–cyclen‐functionalized magnetic beads have been prepared in advance. The thiol‐affinity magnetic beads are reusable at least 15 times without a decrease in their thiol‐binding ability, and they are stable for six months at room temperature.  相似文献   

8.
The core–shell structure Fe3O4/SiO2 magnetic microspheres were prepared by a sol–gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu2+, Ni2+ and Zn2+, were chelated on the Fe3O4@SiO2–IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni2+‐chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3O4@SiO2–IDA–Ni2+ magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His‐tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Magnetic poly(acrylic acid‐acrylamide‐butyl methacrylate) (P(AAB)) nanocomposite hydrogels were prepared and used as adsorbents for removal and separation of cationic dyes from aqueous solution. These magnetic P(AAB) nanocomposite hydrogels were characterized by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). It was found that these magnetic P(AAB) nanocomposite hydrogels had magnetic responsive characters. The dynamic swelling, removal, and separation of cationic dye, crystal violet (CV), and basic magenta (BM) by these magnetic nanocomposite hydrogels were studied. The adsorption capacity and isotherm studies of cationic dyes onto magnetic P(AAB) nanocomposite hydrogels have been evaluated. The magnetic P(AAB) nanocomposite hydrogels containing Fe3O4 particles can be easily manipulated in magnetic field for removal and separation of cationic dyes from aqueous solution. Adsorption process agreed very well with the Langmuir and Freundlich models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Glass capillary gas chromatography is a high resolution separation method which allows the qualitative and quantitative analysis of even complex mixtures, which may contain many components–also isomeric–in a wide range of volatilities, polarities and concentrations. The principal limitation of gas chromatographic application is given by an insufficient volatility of the species to be separated. Elevated temperatures have to be applied if the application range is to be extended and to achieve steep peak profiles, i.e. low detection limits at high resolution. The use of elevated temperatures is limited, of course, by the temperature stability of both the solvent (stationary liquid and support) and the solutes. The problems of trace analysis for low volatility compounds at high resolution and its limitational parameters regarding sampling, separation and detection are discussed. The applicability of glass capillary columns in this field is influenced by the following parameters: tailing behaviour; irreversible adsorption of polar and decomposition of unstable solutes; thermal stability of stationary liquid (including the support deactivation); separation efficiency and sample capacity (film thickness). Multidimensional gas chromatography using capillary columns coupled either with a packed or another capilllary column for preseparations may be applied with advantage in the analysis of complex mixtures.  相似文献   

11.
An integrated numerical approach was developed and implemented to study the hydrodynamic characteristics of pilot and plant systems of membrane bio-reactor (MBR). The approach incorporated Eulerian multiphase model, porous medium scheme, and also successfully took into account the vertically dependent filtration flux and the effect of mixed liquor suspended solids (MLSS) on mixed liquor viscosity. Utilizing this integrated numerical approach, a clear distinction of up-flow and down-flow regions within the pilot single module had been simulated. The simulated mixed liquor velocity and air hold-up agreed well with published experimental measurements and theoretical estimation, respectively. However, when a total of 160 modules were consolidated into an actual plant operation (i.e. Plant A), the average mixed liquor and air velocities of each module encountered a drop of approximately 50–80% lower compared to the pilot system. This implied that an approach applicable for the studies on both pilot and plant simulations was essential to identify and subsequently improve the problem. One example of optimization was by enlarging the tank size for the plant system (i.e. Plant B). With this minor design modification, the mixed liquor and air velocities were improved by 50% and noticeable up-flow and down-flow circulations were achieved.  相似文献   

12.
Bi Y  Pan X  Chen L  Wan QH 《Journal of chromatography. A》2011,1218(25):3908-3914
Although magnetic field-flow fractionation (MgFFF) is emerging as a promising technique for characterizing magnetic particles, it still suffers from limitations such as low separation efficiency due to irreversible adsorption of magnetic particles on separation channel. Here we report a novel approach based on the use of a cyclic magnetic field to overcome the particle entrapment in MgFFF. This cyclic field is generated by rotating a magnet on the top of the spiral separation channel so that magnetic and opposing gravitational forces alternately act on the magnetic particles suspended in the fluid flow. As a result, the particles migrate transversely between the channel walls and their adsorption at internal channel surface is prevented due to short residence time which is controlled by the rotation frequency. With recycling of the catch-release process, the particles follow saw-tooth-like downstream migration trajectories and exit the separation channel at velocities corresponding to their sedimentation coefficients. A retention model has been developed on the basis of the combined effects of magnetic, gravitational fields and hydrodynamic flow on particle migration. Two types of core-shell structured magnetic microspheres with diameters of 6.04- and 9.40-μm were synthesized and used as standard particles to test the proposed retention theory under varying conditions. The retention ratios of these two types of particles were measured as a function of magnet rotation frequency, the gap between the magnet and separation channel, carrier flow rate, and sample loading. The data obtained confirm that optimum separation of magnetic particles with improved separation efficiency can be achieved by tuning rotation frequency, magnetic field gradient, and carrier flow rate. In view of the widespread applications of magnetic microspheres in separation of biological molecules, virus, and cells, this new method might be extended to separate magnetically labeled proteins or organisms for multiplex analyte identification and purification.  相似文献   

13.
A novel protocol for preparing magnetic poly(vinyl alcohol) (PVA) beads by reverse spray suspension crosslinking was reported. The hydrophilic Fe3O4 nanoparticles were mixed with PVA, glutaraldehyde, and water to form aqueous phase. Then the aqueous phase was sprayed into vegetable oil by a pressure of nitrogen gas to form water in oil (W/O) suspension. The magnetic PVA beads were obtained in the presence of hydrochloric acid catalyst. It was found that the magnetic PVA beads obtained good properties when the PVA concentration was 10%, and the oil phase temperature was controlled at 40 °C. The mechanical stirring has little impact on the size of magnetic PVA beads in the process of reverse spray suspension crosslinking. The Cibacron Blue (CB) was coupled on the surface of magnetic PVA beads by surface chemical reaction. The morphology, size, and magnetic properties of the magnetic PVA beads were examined by scanning electron microscopy, laser diffraction, and vibrating sample magnetometer, respectively. Compared with the stirring method, it was found that the size of magnetic PVA beads was monodisperse and their saturation magnetization was much higher. Fourier transform infrared and X‐ray photoelectron spectroscopy experimental results proved that CB molecules were covalently immobilized onto the surface of the magnetic PVA beads. Meanwhile, the protein affinity separation experiments demonstrated that the magnetic PVA beads can potentially be used as a carrier for large‐scale protein separation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 203–210, 2008  相似文献   

14.
Monodisperse magnetic acrylate based particles (5.0 µm in diameter) containing histidine were synthesized using a modified suspension polymerization method for the purification of immunoglobulin G from human plasma in a magnetically stabilized fluidized bed. N-methacryloyl-(L)-histidine methyl ester (MAH) was used as pseudo-specific ligand/co-monomer. MAH content of the magnetic particles was calculated as 55.3 µmol MAH/g polymer using elemental analysis. Immunoglobulin G binding amount of the magnetic particles decreased with increase of the flow-rate. The maximum immunoglobulin G binding was observed at pH 7.4 (phosphate buffer). Immunoglobulin G binding amount onto the magnetic poly(ethylene glycol dimethacrylate) [mPEGDMA] particles was found to be almost negligible due to the hydrophilic polymer structure. High binding values were obtained from aqueous solutions (1646 mg/g). Higher immunoglobulin G binding was observed when human plasma was used (2169 mg/g). Purity of the separated immunoglobulin G from human plasma was found to be 87%. Magnetic PEGDMAH particles could be used many times without significant loss in protein binding amount.  相似文献   

15.
In this paper we report a study of laccase immobilisation on different kinds of carrier particles. The immobilisation of enzyme on the particle surface with respect to the immobilisation efficiency and the properties of the immobilised enzymes is discussed. The immobilisation of laccase on polystyrene particles bearing reactive beta-diketone groups is characterised by high efficiency, but grafting of the enzyme increases the stability of the colloidal system, which makes the separation/purification procedure difficult. Additionally, the extreme colloidal stability of the immobilisates hinders the application of such particles with immobilised enzymes in some applications where the recycling of the enzyme should be performed. It has been found that hybrid PS-AAEM particles equipped with maghemite show similar immobilisation efficiency to that of their analogues without maghemite and can additionally be manipulated in magnetic fields. The activity of the immobilised laccase is much higher in the pH region 5-7 and the temperature range 50-70 degrees C as compared with that of the free enzyme. Immobilised enzymes also exhibit much better storage stability.  相似文献   

16.
羟基苯甲酸类化合物用途广泛,极性较强,在复杂水溶液体系中这些类似物的分离纯化与分析非常困难。 本文以磁性Fe3O4纳米颗粒为载体,没食子酸(GA)为模板分子,制备了磁性表面分子印迹聚合物(MIP)。 利用透射电子显微镜、红外光谱、磁强测定等检测手段对MIP进行了结构表征。 并对其吸附性能进行研究,比较了该MIP对GA及其它3种结构类似物的吸附性能差异。 结果表明,制备的以GA为模板的磁性分子印迹聚合物为核壳球形结构,键合牢固,对GA的吸附动力学符合准二级动力学方程模型,吸附过程属于Langmuir单分子层吸附。 该聚合物对GA表现出优异的选择性识别能力,其吸附量(318 K时37.736 mg/g)远远高于结构类似物。 该磁性分子印迹聚合物对模板分子不仅具有特异识别能力,而且能够磁控分离,分离效率高,可用于固相萃取。  相似文献   

17.
A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H(2)O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood.  相似文献   

18.
氧化铁磁性纳米粒子通过表面化学修饰得到无机、有机或聚合物壳包覆在其表面。其中的壳结构既具有生物适应性,又具有可键合生物分子如细胞、蛋白质、酶、抗体和核酸的活性基团,而核具有磁性特性。本文总结了氧化铁磁性纳米粒子的制备方法,介绍了其表面化学修饰及在分离和分析应用的最新进展。  相似文献   

19.
J Wang  A N Kawde  A Erdem  M Salazar 《The Analyst》2001,126(11):2020-2024
Magnetic bead capture has been used for eliminating non-specific adsorption effects hampering label-free detection of DNA hybridization based on stripping potentiometric measurements of the target guanine at graphite electrodes. In particular, the efficient magnetic separation has been extremely useful for discriminating against unwanted constituents, including a large excess of co-existing mismatched and non-complementary oligomers, chromosomal DNA, RNA and proteins. The new protocol involves the attachment of biotinylated oligonucleotide probes onto streptavidin-coated magnetic beads, followed by the hybridization event, dissociation of the DNA hybrid from the beads, and potentiometric stripping measurements at a renewable graphite pencil electrode. Such coupling of magnetic hybridization surfaces with renewable graphite electrode transducers and label-free electrical detection results in a greatly simplified protocol and offers great promise for centralized and decentralized genetic testing. A new magnetic carbon-paste transducer, combining the solution-phase magnetic separation with an instantaneous magnetic collection of the bead-captured hybrid, is also described. The characterization, optimization and advantages of the genomagnetic label-free electrical protocol are illustrated below for assays of DNA sequences related to the breast-cancer BRCA1 gene.  相似文献   

20.
L‐Arginine exhibits a wide range of biological activities through a complex and highly regulated set of pathways that remain incompletely understood at both the whole‐body and the cellular levels. The aim of this study is to develop and validate effective purification system for L‐arginine interacting factors (AIFs). We have recently developed novel magnetic nanobeads (FG beads) composed of magnetite particles/glycidyl methacrylate (GMA)–styrene copolymer/covered GMA. These nanobeads have shown higher performance compared with commercially available magnetic beads in terms of purification efficiency. In this study, we have newly developed L‐arginine methyl ester (L‐AME)‐immobilized beads by conjugating L‐AME to the surface of these nanobeads. Firstly, we showed that inducible nitric oxide synthase, which binds and uses L‐arginine as a substrate, specifically bound to L‐AME‐immobilized beads. Secondly, we newly identified phosphofructokinase, RuvB‐like 1 and RuvB‐like 2 as AIFs from crude extracts of HeLa cells using this affinity chromatographic system. The data presented here demonstrate that L‐AME‐immobilized beads are effective tool for purification of AIFs directly from crude cell extracts. We expect that the present method can be used to purify AIFs from various types of cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号