首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The coupling of chemical oscillators is investigated in the case of the Brusselator model. The stable steady states obtained by coupling two, three and more Brusselators in parallel, in a diffusion like manner are discussed. Results are given for identical, identical with perturbation (i.e. almost identical), and completely dissimilar oscillators.Parameter domains in which stability and multistability can be found are analyzed. These domains usually increase with the number of cells - thus a bigger system of oscillators has a greater chance to be stabilized. The symmetry patterns of the stable domains are discussed.  相似文献   

2.
A system of interacting oscillators with a quadratic Hamiltonian is investigated. The necessary and sufficient conditions are determined for the system to exhibit dissipative properties with respect to one designated oscillator. One of the necessary conditions is the existence of a continuous frequency spectrum in the system.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 94–98, January, 1988.  相似文献   

3.
The influence of the asymmetry of the nonlinear element characteristic on the chaotic oscillations of Chua’s bistable oscillator is studied. It is shown that such asymmetry causes asymmetry of a chaotic attractor that maps the switching of motions between two basins of attraction up to the concentration of oscillations in one basin. Oscillation control in a bistable chaotic self-oscillating system (two coupled Chua’s oscillators) is considered. It is demonstrated that oscillations excited in two basins of attraction may pass to one of them and that oscillations may build up in two basins when they are autonomously excited in different basins. It is also found that chaotic oscillations in a coupled system may be excited at parameter values for which the autonomous chaotic oscillations of partial oscillators are absent. The influence of external noiselike oscillations is investigated.  相似文献   

4.
We consider a resonantly perturbed system of coupled nonlinear oscillators with small dissipation and outer periodic perturbation. We show that for the large time t~?(-2) one component of the system is described for the most part by the inhomogeneous Mathieu equation while the other component represents pulsation of large amplitude. A Hamiltonian system is obtained which describes for the most part the behavior of the envelope in a special case. The analytic results agree with numerical simulations.  相似文献   

5.
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker-Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.  相似文献   

6.
We study intermittent lag synchronization in a system of two identical mutually coupled Duffing oscillators with parametric modulation in one of them. This phenomenon in a periodically forced system can be seen as intermittent jump from phase to lag synchronization, during which the chaotic trajectory visits a periodic orbit closely. We demonstrate different types of intermittent lag synchronizations, that occur in the vicinity of saddle-node bifurcations where the system changes its dynamical state, and characterize the simplest case of period-one intermittent lag synchronization.  相似文献   

7.
《Physics letters. A》2005,338(2):141-149
Synchronization properties of two identical mutually coupled Duffing oscillators with parametric modulation in one of them are studied. Intermittent lag synchronization is observed in the vicinity of saddle-node bifurcations where the system changes its dynamical state. This phenomenon is seen as intermittent jumps from phase to lag synchronization, during which the chaotic trajectory visits closely a periodic orbit. Different types of intermittent lag synchronization are demonstrated and the simplest case of period-one lag synchronization is analyzed.  相似文献   

8.
The results of analysis of the periodic solutions obtained within the framework of complete and truncated equations for a system of identical Van-der-Pol-Duffing oscillators with nonlinear coupling are compared. This work was presented at the Summer Workshop “Dynamic Days” (Nizhny Novgorod, June 30–July 2, 1998). Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 41, No. 12, pp. 1531–1536, December, 1998.  相似文献   

9.
10.
We study the bifurcation and dynamical behaviour of the system of N globally coupled identical phase oscillators introduced by Hansel, Mato and Meunier, in the cases N=3 and N=4. This model has been found to exhibit robust ‘slow switching’ oscillations that are caused by the presence of robust heteroclinic attractors. This paper presents a bifurcation analysis of the system in an attempt to better understand the creation of such attractors. We consider bifurcations that occur in a system of identical oscillators on varying the parameters in the coupling function. These bifurcations preserve the permutation symmetry of the system. We then investigate the implications of these bifurcations for the sensitivity to detuning (i.e. the size of the smallest perturbations that give rise to loss of frequency locking).For N=3 we find three types of heteroclinic bifurcation that are codimension-one with symmetry. On varying two parameters in the coupling function we find three curves giving (a) an S3-transcritical homoclinic bifurcation, (b) a saddle-node/heteroclinic bifurcation and (c) a Z3-heteroclinic bifurcation. We also identify several global bifurcations with symmetry that organize the bifurcation diagram; these are codimension-two with symmetry.For N=4 oscillators we determine many (but not all) codimension-one bifurcations with symmetry, including those that lead to a robust heteroclinic cycle. A robust heteroclinic cycle is stable in an open region of parameter space and unstable in another open region. Furthermore, we verify that there is a subregion where the heteroclinic cycle is the only attractor of the system, while for other parts of the phase plane it can coexist with stable limit cycles. We finish with a discussion of bifurcations that appear for this coupling function and general N, as well as for more general coupling functions.  相似文献   

11.
In this paper, we study a system of three coupled van der Pol oscillators that are coupled through the damping terms. Hopf bifurcations and amplitude death induced by the coupling time delay are first investigated by analyzing the related characteristic equation. Then the oscillation patterns of these bifurcating periodic oscillations are determined and we find that there are two kinds of critical values of the coupling time delay: one is related to the synchronous periodic oscillations, the other is related to eight branches of asynchronous periodic solutions bifurcating simultaneously from the zero solution. The stability of these bifurcating periodic solutions are also explicitly determined by calculating the normal forms on center manifolds, and the stable synchronous and stable phase-locked periodic solutions are found. Finally, some numerical simulations are employed to illustrate and extend our obtained theoretical results and numerical studies also describe the switches of stable synchronous and phase-locked periodic oscillations.  相似文献   

12.
The solutions of mean-field equations for a system of coupled Boson oscillators on an infinite k-dimensional sphere are discussed in the low density - high temperature region and high density — low temperature region. It is shown that for k = 2 the system exhibits only spatial condensation, whereas for k ⩾ 3 both spatial condensation and Bose-Einstein condensation.  相似文献   

13.
Yaroslavl State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 33, No. 3, pp. 308–314, March, 1990.  相似文献   

14.
We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transitions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchronization frequency is manifested. Numerical simulations are also performed to give consistent results.  相似文献   

15.
A two-dimensional system of nonlocally coupled complex Ginzburg-Landau oscillators is investigated numerically for the first time. As previously shown for the one-dimensional case, this two-dimensional system exhibits anomalous spatio-temporal chaos characterized by power-law spatial correlations. In this chaotic regime, the amplitude difference between neighboring elements displays temporal noisy on-off intermittency. The system is also spatially intermittent in this regime, as revealed by multiscaling analysis: The amplitude field is multiaffine and the difference field is multifractal. Correspondingly, the probability distribution function of the measure defined for each field is strongly non-Gaussian, exhibiting scale-dependent deviations in the tail due to intermittency. (c) 1999 American Institute of Physics.  相似文献   

16.
We show that a hyperbolic chaos can be observed in resonantly coupled oscillators near a Hopf bifurcation, described by normal-form-type equations for complex amplitudes. The simplest example consists of four oscillators, comprising two alternatively activated, due to an external periodic modulation, pairs. In terms of the stroboscopic Poincaré map, the phase differences change according to an expanding Bernoulli map that depends on the coupling type. Several examples of hyperbolic chaos for different types of coupling are illustrated numerically.  相似文献   

17.
In many cell types, asynchronous or synchronous oscillations in the concentration of intracellular free calcium occur in adjacent cells that are coupled by gap junctions. Such oscillations are believed to underlie oscillatory intercellular calcium waves in some cell types, and thus it is important to understand how they occur and are modified by intercellular coupling. Using a previous model of intracellular calcium oscillations in pancreatic acinar cells, this article explores the effects of coupling two cells with a simple linear diffusion term. Depending on the concentration of a signal molecule, inositol (1,4,5)-trisphosphate, coupling two identical cells by diffusion can give rise to synchronized in-phase oscillations, as well as different-amplitude in-phase oscillations and same-amplitude antiphase oscillations. Coupling two nonidentical cells leads to more complex behaviors such as cascades of period doubling and multiply periodic solutions. This study is a first step towards understanding the role and significance of the diffusion of calcium through gap junctions in the coordination of oscillatory calcium waves in a variety of cell types. (c) 2001 American Institute of Physics.  相似文献   

18.
The behavior of neurons can be modeled by the FitzHugh-Nagumo oscillator model, consisting of two nonlinear differential equations, which simulates the behavior of nerve impulse conduction through the neuronal membrane. In this work, we numerically study the dynamical behavior of two coupled FitzHugh-Nagumo oscillators. We consider unidirectional and bidirectional couplings, for which Lyapunov and isoperiodic diagrams were constructed calculating the Lyapunov exponents and the number of the local maxima of a variable in one period interval of the time-series, respectively. By numerical continuation method the bifurcation curves are also obtained for both couplings. The dynamics of the networks here investigated are presented in terms of the variation between the coupling strength of the oscillators and other parameters of the system. For the network of two oscillators unidirectionally coupled, the results show the existence of Arnold tongues, self-organized sequentially in a branch of a Stern-Brocot tree and by the bifurcation curves it became evident the connection between these Arnold tongues with other periodic structures in Lyapunov diagrams. That system also presents multistability shown in the planes of the basin of attractions.  相似文献   

19.
A theoretical investigation of bifurcation structures of periodically forced oscillators is presented. In the plane of forcing frequency and amplitude, subharmonic entrainment occurs in v-shaped (Arnol'd) tongues, or entrainment bands, for small forcing amplitudes. These tongues terminate at higher forcing amplitudes. Between these two limits, individual tongues fit together to form a global bifurcation structure. The regime in which the forcing amplitude is much smaller than the amplitude of the limit cycle is first examined. Using the method of multiple time scales, expressions for solutions on the invariant torus, widths of Arnol'd tongues, and Liapunov exponents of periodic orbits are derived. Next, the regime of moderate to large forcing amplitudes is examined through studying a periodically forced Hopf bifurcation. In this case the forcing amplitude and the amplitude of the limit cycle can be of the same order of magnitude. From a study of the normal forms for this case, it is shown how Arnol'd tongues terminate and how complicated bifurcation structures are associated with strong resonances. Aspects of model and experimental chemical systems that show some of the phenomena predicted from the above theoretical results are mentioned.  相似文献   

20.
The global bifurcation structure for a model of coupled nonlinear oscillators has been analysed numerically. It is shown that destruction of the two-torus preceding chaos is usually observed in this system. The critical surface of the invariant two-torus and its collapse in the course of rotation are firstly observed in a realistic differential equation system. A scaling property for the fine structure of phase-locking regions has also been confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号