首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈立泉  王连忠  车广灿  王刚 《物理学报》1983,32(9):1170-1176
本文在室温到300℃的温度范围内研究了Li4SiO4-Li3VO4和Li4GeO4-Li4SiO4-Li3VO4体系中的离子导电性,发现γII相固溶体Li3+xV1-xSixO4是好的锂离子导体。所研究的成分中Li3.3V0.7Si0.3O4的离子电导率最高,室温下为1×10-5Ω-1·cm-1,在42—192℃的电导激活能为0.36eV,电子电导率可以忽略,因而这是迄今所发现的最好的锂离子导体之一。粗略确定了Li4GeO4-Li4SiO4-Li3VO4三元系中电导率高的范围,发现在Li3.5V0.5Ge0.5O4中Si部分取代Ge可以使电导率进一步提高,Li3.5V0.5Ge0.4Si0.1O4的室温电导率可达1.3×10-5Ω-1·cm-1,电导激活能为0.40eV。 关键词:  相似文献   

2.
A wide variety of solid solutions with a structure related to that of γ Li3PO4 may be prepared. These include materials such as lisicon, Li2+2xZn1-xGeO4 and the title systems, many of which have not been studied previously. Conductivity data are presented for eight systems: Li4GeO4-Li3(P, As, V)O4; Li4TiO4-Li3(As, V)O4; Li4GeO4-Li(Ga, Al)O2; Li4GeO4-Li2CaGeO4 and the results compared with those reported in the literature for Li4SiO4-Li3(P, As, V)O4 systems and lisicon. dc polarisation measurements were made on four of the system and it was found that the electronic transference number is 10?4 or less. The materials with the highest conductivity were found in the systems, Li4 (Ge, Ti) O4-Li3 (As, V)O4 with σ ~ (3 to 4) × 10?5 Ω?1 cm?1 at room temperature. It is noted that the systems with the highest conductivity are generally those with the largest unit cell volume.  相似文献   

3.
Nasicon-type solid electrolyte Li1.3Al0.1Zn0.1Ti1.8P3O12 was prepared by citric acid-assisted acrylamide polymerisation gel method. X-ray diffraction pattern showed that the introduction of Zn2+ in the parent matrix Li1+x Al x Ti2?x P3O12 made it easier to get high-purity rhombohedral structure (space group $ R\overline 3 C $ ) Li1.3Al0.1Zn0.1Ti1.8P3O12 without the evidence of impurity secondary phase. The Li+ kinetics were investigated by complex impedance in bulk pellet and ionic conductivity in battery-type composite cathode, respectively. Grain-interior resistance measured by galvanostatic intermittent titration technique, potential step chronoamperometry, and AC impedance spectroscopy at 20 °C varies in the range 1.2–1.95?×?10?4?S?cm?1, which is in good agreement with that obtained by complex impedance method 1.5?×?10?4?S?cm?1.  相似文献   

4.
Abstract

The electrical conductivity and thermoelectric power of pure and doped oxides system La2O3-Cr2O3-Al2O3 were investigated. Only single phase was observed in the compositions studied (20 atom fraction of aluminium).

The conductivity increases with increasing chromium content in the range of compositions studied, the values ranging from 10?4 (ω-cm)?1 to 1. 2 × 10?1(ω-cm)?1. In the case of samples doped with calcium (0. 01) the corresponding values range from 2 × 10?1 (ω-cm)?1 to 1. 67(ω-cm)?1. The significance of the results has been discussed.  相似文献   

5.
Several glass ceramic compositions dispersed with Ga2O3 nanocrystals, in the series samples (100???x)[0.4Li2O–0.1TiO2–0.5P2O5]?+?xGa2O3 with x?=?0, 2, 4, 6, 8, and 10?mol% of Ga2O3 were synthesized via high-energy ball milling technique and labeled as lithium gallium titanate phosphate glass (LTPG x ) (x is the mol% of Ga2O3 nanocrystals). The compositions have been selected on the basis of thermal stability data obtained from differential thermal analysis. X-ray diffraction studies indicate nanocrystalline phase formation in the controlled crystallized glasses. The variation of electrical conductivity was explained in the light of growth of nanocrystalline phases. The best bulk conductivity (σ?=?7.03?×?10?4?S?cm?1, at 303?K) was achieved by the sample containing 8?mol% of Ga2O3 nanocrystals content, labeled as LTPG8 sample. The activation energy for conduction (Ea σ ) is obtained from the temperature dependent of conductivity data, which is fitted to Arrhenius equation. The single super curve in the scaling spectra suggested the temperature-independent relaxation phenomenon.  相似文献   

6.
Lithium ion conductivity in solid solutions of Li7Ta1-xNbxO6, Li7Ta1-xBixO6, Li7+xTa1-xZrxO6 and Li7-2xCaxTaO6 has been measured as a function of temperature and composition using the complex impedance method. At 200°C the conductivities of Li7Ta0.7Nb0.3O6, Li7.4Ta0.6Zr0.4O6 and Li6.6Ca0.2TaO6 are 4.3 × 10-4(ωcm)-1, 3.0 × 10-4(ωcm)-1, 4.0 × 10-4(ωcm)-1 and 1.6 × 10-4(ωcm)-1 respectively. The results are discussed in relation to structural properties.  相似文献   

7.
Dongmei Wu  Yuanping Cheng 《Ionics》2013,19(3):395-399
Zn-doped Li4Ti5O12 was prepared by a ball milling-assisted solid-state method, and the characters were determined by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, and galvanostatic charge–discharge testing. The results show that Li4Ti5?x Zn x O12 (x?=?0, 0.05) exhibits the pure phase structure, and Zn doping does not change the electrochemical reaction process and basic spinel structure of Li4Ti5O12. The particle size of both samples is about 300–500 nm. The prepared Li4Ti4.95Zn0.05O12 presents an excellent rate capability and capacity retention. At the charge–discharge rate of 1C, the initial discharge capacity of Li4Ti4.95Zn0.05O12 is 268 mAh g?1. After 90 cycles at 5C, the discharge capacity of Li4Ti4.95Zn0.05O12 is obviously higher than that of Li4Ti5O12. The excellent electrochemical performance of the Li4Ti4.95Zn0.05O12 electrode could be attributed to the improvement of reversibility by doping zinc and the sub-micro particle size.  相似文献   

8.
LISICON thin films have been prepared with RF sputtering and subsequent heat-treatment. The crystal phases of sputtered films depend on the sputtering conditions, especially the target composition and ambient gas atmosphere. Though the as-sputtered films in Ar-O2 mixed gas (target composition: Li3Zn0.5GeO4+0.5 ZnO, gas pressure: 9×10-2 Torr, oxygen gas content: 74.6%) were amorphous; LISICON single phase thin films were obtained after annealing at 600°C for 6 h. The conductivity of the film at 500°C is 5×10-3ω-1cm-1 which is slightly lower than that for ceramic Li3Zn0.5GeO4.  相似文献   

9.
The crystal chemistry of the Kx(Znx/2Ge1-x2)O2 and Kx(GaxGe1-x)O2 systems has been investigated. In each of them a solid solution with a cristobalite-type structure has been obtained with a 0.90?×?1 range. The K+ conductivity increases strongly with vacancy content, while the activation energy remains nearly constant.Influence of various crystal chemical parameters on the conductivity (lattice covalency, size of the bottlenecks, etc...) is discussed.  相似文献   

10.
The enthalpies of formation of a series of high and low temperature phases in the ternary oxide system LixV2O5 have been determined by solution calorimetry. Samples of the former, α-Li0.04V2O5, β-Li0.30V2O5, β'-Li0.48V2O5 and γ-LiV2O5, were prepared by solid state reaction at 650°C. The ambient temperature materials Li0.1V2O5(I), Li0.45V2O5(II) and Li1.03V2O5(III) were prepared by n-butyl lithiation in hexane. The thermochemistries of the two classes of material were examined and related to structural features and to the observed behaviour of V2O5 as a battery cathode material in lithium cells.  相似文献   

11.
Lithium phosphate (Li3PO4) is one of the promising solid electrolyte materials for lithium-ion battery because of its high ionic conductivity. A crystalline form of Li3PO4 had been prepared by two different methods. The first method was wet chemical reaction between LiOH and H3PO4, and the second method was solid-state reaction between Li2O and P2O5. Crystal structure of Li3PO4 white powder had been investigated by using an X-ray diffraction (XRD) analysis. The results show that Li3PO4 prepared by wet chemical reaction belongs to orthorhombic unit cell of β-Li3PO4 with space group Pmn21. Meanwhile, Li3PO4 powder prepared by solid-state reaction belongs to orthorhombic unit cell of γ-Li3PO4 with space group Pmnb and another unknown phase of Li4P2O7. The impurity of Li4P2O7 was due to phase transformation in solid state reaction during quenching of molten mixture from high temperature. Ionic conductivity of Li3PO4 prepared by solid-state reaction was ~3.10?7 S/cm, which was higher than Li3PO4 prepared by wet chemical reaction ~4.10?8 S/cm. This increasing ionic conductivity may due to mixed crystal structures that increased Li-ion mobility in Li3PO4.  相似文献   

12.
In the system Li4SiO4-Li3AsO4, Li4SiO4 forms a short range of solid solutions containing up to 14 to 20% Li3AsO 4, depending on temperature, and γ-Li3AsO4 forms a more extensive range of solid solutions containing up to ≈55% Li4SiO4. The Li4SiO4-Li3AsO4 phase diagram has been determined and is of binary eutectic character. The ac conductivity of polycrystalline samples was measured over the range 0 to at least 300°C for nine different compositions. The two solid solution series have much higher conductivity than the pure end-members; maximum conductivity was observed in the γ-Li3AsO4 solid solutions containing ≈40 to 55% Li4SiO4, with values of ≈2×10?6 Ω?1 cm?1 at 20°C rising to ≈0.02 Ω?1 cm?1 at 300°C. These values are comparable to those found in the system Li4SiO4-Li3PO4. The variation with composition of the Arrhenius prefactor and activation energy has been interpreted in terms of the mechanisms of conduction. Li3AsO4 is a poor conductor essentially because the number of mobile Li+ ions is very small. This number, and hence the conductivity, increases dramatically on forming solid solutions with Li4SiO4, by the creation of interstitial Li+ ions. At ≈40 to 55% Li4SiO4, the number of mobile Li+ ions appears to be optimised. An explanation for the change in activation energy of conduction at ≈290°C in Li4SiO4 and at higher temperatures in Li4SiO4 solid solutions is given in terms of order-disorder of the Li+ ions.  相似文献   

13.
In a view to balancing cost and lithium ion conductivity, Li6BaLa2Nb x Ta2???x O12 (x?=?0–2) was prepared by solid-state reaction, and its corresponding AC impedances were tested at temperatures ranging from 20 to 250 °C in air. Li6BaLa2Ta2O12 exhibits the highest conductivity, 8.77?×?10?6?S/cm, and the second highest is Li6BaLa2Nb2O12 with 6.69?×?10?6?S/cm. Partial replacement of Ta with Nb cannot bestow the advantages of cost saving or the enhancement of lithium ion conductivity. X-ray diffraction patterns revealed a gradual change as an increasing amount of Nb replaces Ta in Li6BaLa2Nb x Ta2???x O12 (x?=?0–2), and it is thought that the trending of Nb and Ta to rest on the crystallographic planes is different.  相似文献   

14.
王超英  王连忠  石磊  陈立泉 《物理学报》1984,33(12):1700-1706
本文用阻抗谱方法研究了Li3+xV1-xTxO4(T=Si,Ge)多晶的离子导电性,发现一些工艺条件如成型压强、烧结时间和烧结程序对电导率有很大影响。注意分析了这些影响的物理起因。最佳工艺条件是:在大约8t/cm2压强下成型样品。在1000℃连续烧结5至6天,烧结过程中,应尽量避免温度波动。在此条件下制备的Li3.5V0.5Ge0.5关键词:  相似文献   

15.
Lithium vanadium-borate glasses with the composition of 0.3Li2O–(0.7-x)B2O3xV2O5 (x?=?0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, and 0.475) were prepared by melt-quenching method. According to differential scanning calorimetry data, vanadium oxide acts as both glass former and glass modifier, since the thermal stability of glasses decreases with an increase in V2O5 concentration. Fourier transform infrared spectroscopy data show that the vibrations of [VO4] structural units occur at V2O5 concentration of 45 mol%. It is established that the concentration of V4+ ions increases exponentially with the growth of vanadium oxide concentration. Direct and alternative current measurements are carried out to estimate the contribution both electronic and ionic conductivities to the value of total conductivity. It is shown that the electronic conductivity is predominant in the total one. The glass having the composition of 0.3Li2O-0.275B2O3-0.475V2O5 shows the highest electrical conductivity that has the value of 7.4?×?10?5 S cm?1 at room temperature.  相似文献   

16.
S. B. R. S. Adnan  N. S. Mohamed 《Ionics》2014,20(11):1641-1650
Novel Li4.08Zn0.04Si0.96O4 electrolyte was synthesized by citric acid-assisted sol–gel method. The compound was studied by X-ray diffraction and complex impedance spectroscopy in the frequency range from 10 Hz to 10 MHz and temperature range from 573 to 773 K. The conductivity–frequency spectra exhibited two regions of conductivity dispersion related to Li+ ion transport in the bulk and grain boundaries. The activation energy of the bulk conductivity was found to be equal to the activation energy of relaxation frequency in the bulk. This indicated that the increase in conductivity with temperature was due to the increase in ion mobility while the number of charge carrier concentration was found to be constant with selected temperature range. The observation was in agreement with the calculated charge carrier concentration and ion mobility derived from conductance spectra, σ ac(ω)?=?σ o ?+? α .  相似文献   

17.
Ronghua Li  Liyun Zi  Chunzhi Shen  Wenji Wang 《Ionics》2005,11(1-2):146-151
The B-site substituted perovskite solid solution systems Li3xLa0.67−xREyTi1−2yPyO3 (RE=Sc, Y, Nd, Sm, Eu, Yb) have been investigated. Perovskite solid solutions formed in the range of x=0.10, y<0.10 for RE=Sc3+, Y3+, Yb3+, x=0.10, y≤0.05 for RE=Nd3+, Sm3+, Eu3+. Li0.3La0.57Nd0.05Ti0.9P0.05O3 has the highest bulk conductivity of 4.31×10−4 S·cm−1 and the highest total conductivity of 2.52×10−4 S·cm−1 at room temperature in all prepared compositions. The compositions have low activation energies of about 24–30 kJ/mol in the temperature ranges of 298–523 K. SEM studies showed that the sample made by solid-state reaction has a sphere-like morphology and a rough particle with particle size of about 50 μm. The research results also indicated that the reaction temperature decreases and the electrochemical stabilities of the titanate-based perovskite-type solid solutions are improved by using RE3+ and P5+ replaced Ti4+ on B-site in the Li3xLa0.67−xTiO3 parent.  相似文献   

18.
分散第二相γ-Al2O3对β-Li2SO4离子导电性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了分散第二相γ-Al2O3对β-Li2SO4离子导电性的影响。β-Li2SO4(γ-Al2O3)的电导率随γ-Al2O3含量的增加而提高,到γ-Al2O3为50mol%时达到极大。当温度为253℃时,β-Li2SO< 关键词:  相似文献   

19.
Li1+xGe2-xAlxP3O12系统的相关系和电导   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了Li1+xGe2-xAlxP3O12系统的相组成和电导的关系。发现用LiGe2P3O12作为基体化合物,通过离子置换可以得到好的锂离子导体。用Al3+置换LiGe2P3O12中的Ge4+,在0关键词:  相似文献   

20.
崔万秋  沈志奇  周德保 《物理学报》1993,42(7):1101-1109
本文采用还原气氛制备导电性能优良的多晶多相陶瓷材料Li2Mo2-xWxO6(x=0,0.1,0.3),采用粉末X射线衍射分析、特征X射线能谱分析、红外光谱分析和电子自旋共振波谱分析等现代测试手段,得到样品的物相结构为Li2Mo1-xWxO4和MoO2两相组成。W的掺入主要取代Mo进入Li2 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号