首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
Control of very low oxygen partial pressures was performed in the range of 10−21-10−24 Pa at 750°C by pumping oxygen into the purified hydrogen stream with a stabilized zirconia cell. The oxygen partial pressures were monitored by a stabilized zirconia sensor. The stabilized zirconia oxygen sensor was calibrated by H2-CO2 gas buffer mixture in the range of oxygen pressure from 10−17 to 10−21 Pa, and oxygen partial pressures below 10−21 Pa were measured by extrapolating the calibration line to very low oxygen partial pressures. The lowest oxygen partial pressure controlled was 10−24 Pa at 750°C, which was limited by gas leaks in the system and also by the reduction of the ionic transference number in solid electrolyte used as the oxygen pump.  相似文献   

2.
《Solid State Ionics》2006,177(17-18):1469-1476
The total conductivity and the partial hydrogen ion conductivity of a single crystal of SrTiO3 have been investigated by transport number measurements using a hydrogen activity concentration cell/EMF method in wet atmospheres as a function of pO2 (10 20–1 atm) at 1000 °C and as a function of temperature (350–1050 °C) in wet hydrogen. The single crystal exhibits a small but readily measurable proton conductivity contribution in wet oxidising atmospheres. Earlier indications of apparent – but unlikely – transport by negatively charged hydrogen ions under reducing conditions and high temperatures in polycrystalline SrTiO3 have been reproduced for the single crystal, thus eliminating grain boundaries and porosity as a cause of such findings. The paper proposes transport of neutral hydrogen species through the oxide as an alternative cause: This results in polarization of the hydrogen activity at the interface between the electrodes and the electrolyte, in turn giving rise to an unintended gradient in oxygen activity and an EMF resulting from the relatively high oxygen ion transport number of the material.  相似文献   

3.
Abstract

The electrical conductivity of CaTi1?x Fe x O3-δ (x = 0.1) was measured by an alternating current van der Pauw technique versus oxygen partial pressure (10?30-1 atm) and temperature (450–1200°C). The results were interpreted to reflect n-type, ionic and p-type conductivity at respectively low, intermediate and high oxygen partial pressures. The apparent activation enthalpy for the ionic conductivity, interpreted to reflect the mobility of oxygen vacancies, was 0.87 eV. The enthalpy of intrinsic formation of electronic defects (apparent band gap E g) was 3eV. The results are compared with literature data for CaTi0.8Fe0.2O3-δ and with Fe-substituted SrTiO3 and discussed in terms of iron-oxygen vacancy association and ordering.  相似文献   

4.
The defect structure of lanthanum-doped polycrystalline calcium titanate was investigated by measuring the oxygen partial pressure (100–10?18 atm.) dependence of the electrical conductivity at 1000° C and 1050°C. Two types of charge compensation were observed, namely electronic and ionic. For P02 < 10?15 atm. the carrier concentration was fixed by the amount of lanthanum (donor) added and the conductivity was found to be independent of oxygen partial pressure (electronic compensation). For higher oxygen partial pressure conditions (P22 > 10?13 atm.) the extra charge of the lanthanum was compensated by doubly ionized calcium vacancies (ionic compensation). In the ionic compensation region, a model involving a shear structure is discussed.  相似文献   

5.
Amorphous nonstoichiometric ZrOx films of different composition have been synthesized by the method of ion-beam sputtering deposition of metallic zirconium in the presence of oxygen at different partial oxygen pressures in the growth zone, and their optical properties have been studied in the spectral range of 1.12–4.96 eV. It is found that light-absorbing films with metallic conductivity are formed at the partial oxygen pressure below 1.04 × 10–3 Pa and transparent films with dielectric conductivity are formed at the pressure above 1.50 × 10–3 Pa. It is shown that the spectral dependences of optical constants of ZrOx films are described well by the corresponding dispersion models: the Cauchy polynomial model for films with dielectric conductivity and the Lorentz–Drude oscillator model for films with metallic conductivity.  相似文献   

6.
The electrical conductivity of perovskite-related oxides CaTi1−xAlxO3−δ and SrTi1−xAlxO3−δ (x=0−0.4) were investigated within the temperature range 900 to 1000 °C and the oxygen partial pressure range between 10−20 and 0.21 atm using a dc four-point technique. The materials investigated show predominantly p-type electronic conductivity at high, n-type electronic conductivity at low, and ionic conductivity at intermediate oxygen partial pressures. The values of ionic conductivity in CaTi1−xAlxO3−δ were found to be lower than those in CaTi1−xFexO3−δ. The effect of aluminium concentration on the high-temperature transport properties was examined. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15 – 21, 2002.  相似文献   

7.
The electrical properties and proton conduction of Gd0.1Ce0.9O1.95 (10GCO) were investigated via impedance spectroscopy in different atmospheres and various gas concentration cells. In oxygen atmosphere, GCO is nearly a pure oxygen ionic conductor, while in hydrogen GCO behaves as a mixed conductor of oxygen ions, electrons and protons. Depending on the temperature, the total conductivity is usually enhanced by one to two orders of magnitude in hydrogen than in air/oxygen due to mixed conduction. By examining ionic transport properties of oxygen ions and protons using gas concentration cells we have discovered that the ionic transport properties depend largely on the gas atmospheres and change from one type to the other. Proton conduction generally exists in GCOs, and becomes significant in hydrogen atmospheres, which normally results in a contribution between 5 to 10 % of the total conductivity for 10 GCO. A maximum value of 17 % of the contribution by protons has been observed. The reduction of Ce4+ to Ce3+ of the sample in reduced atmospheres causes the formation of additional oxygen vacancies and electrons, associated also with the creation of protons. All these charge carriers are responsible for the electrical and transport properties of the investigated GCO materials. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

8.
鲍善永  董武军  徐兴  栾田宝  李杰  张庆瑜 《物理学报》2011,60(3):36804-036804
利用脉冲激光沉积技术,通过改变沉积过程中的氧气压力,在蓝宝石(0001)基片上制备了一系列ZnMgO合金.通过X射线衍射、反射和透射光谱以及室温和变温荧光光谱,对薄膜的结构和光学性能进行了系统地表征,分析了工作气压对ZnMgO合金薄膜的结晶质量及光学特性的影响.研究结果表明:随着沉积环境中氧气压力的增大,ZnMgO薄膜的结晶质量下降,富氧环境下,与蓝宝石晶格平行的ZnO晶粒的出现是导致薄膜结晶质量下降的主要原因;相对于本征ZnO,不同氧气环境下沉积的ZnMgO薄膜的紫外荧光峰均出现了不同程度的蓝移.随着工 关键词: ZnO Mg掺杂 脉冲激光沉积 薄膜生长 光学特性  相似文献   

9.
《Solid State Ionics》2006,177(5-6):549-558
Perovskite-type LaGa0.65Mg0.15Ni0.20O3−δ exhibiting oxygen transport comparable to that in K2NiF4-type nickelates was characterized as a model material for ceramic membrane reactors, employing mechanical tests, dilatometry, oxygen permeability and faradaic efficiency measurements, thermogravimetry (TG), and determination of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10 15 Pa to 40 kPa. Within the phase stability domain which is similar to La2NiO4+δ, the defect chemistry of LaGa0.65Mg0.15Ni0.20O3−δ can be adequately described by the ideal solution model with oxygen vacancies and electron holes to be the only mobile defects, assuming that Ni2+ may provide two energetically equivalent sites for hole location. This assumption is in agreement with the density of states, estimated from thermopower, and the coulometric titration and TG data suggesting Ni4+ formation in air at T < 1150 K. The hole conductivity prevailing under oxidizing conditions occurs via small-polaron mechanism as indicated by relatively low, temperature-activated mobility. The ionic transport increases with vacancy concentration on reducing p(O2) and becomes dominant at oxygen pressures below 10 7–10 5 Pa. The average thermal expansion coefficients in air are 11.9 × 10 6 and 18.4 × 10 6 K 1 at 370–850 and 850–1270 K, respectively. The chemical strain of LaGa0.65Mg0.15Ni0.20O3−δ ceramics at 1073–1123 K, induced by the oxygen partial pressure variations, is substantially lower compared to perovskite ferrites. The flexural strength determined by 3-point and 4-point bending tests is 167–189 MPa at room temperature and 85–97 MPa at 773–1173 K. The mechanical properties are almost independent of temperature and oxygen pressure at p(O2) = 1–2.1 × 104 Pa and 773–1173 K.  相似文献   

10.
The defect fluorite region of the ternary system ZrO2-Y2O3-TiO2 encompasses compositions which offer both, good electronic and oxygen ion conductivity which enable good catalytic activity for the direct oxidation of methane in a solid oxide fuel cell (SOFC). The electrical properties of compositions YxTiyZr1−(x+y)O2−x/2 (with x=0.15, 0.2, 0.25 and y=0.15, 0.18) were characterised in order to find the composition with highest ionic and electronic conductivity. High titanium dopant concentrations (Y) of 15 and 18 atom%, near the solubility limit of Ti4+ in the fluorite structure, have been introduced to achieve a high electronic conductivity at low oxygen partial pressure. The yttrium content x has been varied between 15 and 25 atom% to find the fluorite composition with the highest ionic conductivity for each titanium level. In the pO2-range from 0.21 to 10−13 atm the conductivity is predominantly ionic and constant over that range. The maximum ionic conductivity is 0.01 Scm−1 for the compositions, which contain 15 atom% yttrium. Substantial electronic conductivity is introduced into the system at low oxygen pressures below 10−13 atm via reduction of Ti4+ ions to Ti3+. The maximum electronic conductivity of 0.2 Scm−1 at 930 °C has been measured for a sample with 18 atom% titanium. The slope of all log(σ) vs. log(pO2) plots follows a pO 2 −1/4 -dependence. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

11.
《Solid State Ionics》2006,177(13-14):1129-1135
The conductivity of acceptor-doped LaNbO4 has been investigated in the temperature range 300 to 1200 °C as a function of the oxygen pressure and water vapor pressure by means of impedance spectroscopy and EMF measurements. The conductivity is predominantly ionic below 800 °C in air and for higher temperatures under reducing conditions. Protons are the major ionic charge carrier in the presence of water vapor. A maximum in proton conductivity of ∼ 0.001 S/cm was obtained at 950 °C in atmospheres containing ca 2% H2O. At high temperatures (> 1000 °C) under oxidizing conditions, electron hole conduction prevails. The conductivity has been modeled assuming that oxygen vacancies and protons compensate the acceptor doping. Transport coefficients describing mobility of defects and thermodynamic constants for the incorporation of protons have been derived.  相似文献   

12.
The electrical conductivity of the SrTi1−xFexO3−δ, BaTi1−xFexO3−δ and SrTi1−xMnxO3−δ systems has been studied in a range of oxygen partial pressures between 10−16 and 0.21 atm at 900 and 1000 °C. The materials exhibit predominantly ionic conductivity in a wide range of intermediate oxygen partial pressures. It has been found that in Fe doped strontium and barium titanates, the dependencies of the ionic conductivity on the acceptor concentration show a local maximum near x=0.2. Taking into account that in the CaTi1−xFexO3−δ system (x=0−0.5), the concentration dependence of the ionic conductivity also has a maximum near x=0.2, it can be concluded that this is a common phenomenon for Fe doped alkali earth titanates. An assumption has been made that a scheme of defect formation devised earlier for Fe doped calcium titanate is applicable for other alkali earth titanates.  相似文献   

13.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

14.
Thermogravimetric and electrical conductivity measurements of cobalt bronze Na0.7CoO2 have been carried out in the temperature range 990-670 K and over oxygen pressures from 100 to 10 kPa. It has been stated that in addition to defects in the sodium sublattice (sodium vacancies and electron holes) in this material there are also ionic defects in the oxygen-cobalt sublattice. The proposed method of analysis of defect type, based on the calculation of derivative of the function ln (def) = f(lnPO2) shows the existence of cobalt ions Co3+ in the sodium sites.  相似文献   

15.
From the study of complex impedance diagrams applied to a symmetric cell Pt-Yb2O3-Pt, the authors have shown the mixed character of electrical conduction within the ytterbium sesquioxide. The measurements were performed at thermodynamic equilibrium in the temperature range from 1423 to 1623 K and the partial pressure of oxygen range from 10?12 to 1 atm. The variations of ionic and electronic conductivity as a function of PO2, were interpreted in terms of point defects e′, ?, V?Yb and YbI?, in the general case of a Frenkel disorder. The relative contributions and the activation energies of conduction of these different defects were determined.  相似文献   

16.
The ionic conductivity of Li3N crystals doped with various metal ions (magnesium, copper and aluminum) or hydrogen has been investigated. The metal ions have a negative effect on the conductivity whereas hydrogen increases it. The intrinsic Li+ ionic conductivity of pure Li3N is (2·-4)×10-4Ω-1cm-1 at room temperature with an activation energy of 0.26?0.27 eV. Doping with hydrogen to a maximum level of 0.5?1.0 atom% results in a conductivity of 6×10-3Ω-1cm-1 and an activation energy which has been lowered to 0.20 eV. A model is proposed for the action of hydrogen whereby the Li-N bonds next to an NH2- group are weakened thereby facilatating the creation of Li+ Frenkel defects and the vacancy migration. Hydrogen-doped Li3N is termed an enhanced intrinsic conductor.  相似文献   

17.
T. Bak  J. Nowotny  C. C. Sorrell  M. F. Zhou 《Ionics》2004,10(5-6):334-342
The present work describes the electrical conductivity of undoped CaTiO3 in terms of the electrical conductivity components corresponding to electrons, electron holes and ionic charge carriers in the temperature range 973 K — 1323 K and under controlled oxygen partial pressure (10 Pa — 72 kPa). These data are considered in terms of the transference numbers of the respective charge carriers. It appears that the ionic conductivity component assumes maximum at the n-p transition when the ionic transfer number reaches 50% of the total conductivity value at 1323 K. The present study also includes the determination of the activation energy of the conductivity component related to ions (162.1 kJ/mol), electrons (134.2 kJ/mol) and electron holes (86.2 kJ/mol). The data obtained in this work indicate that undoped CaTiO3 exhibits a substantial level of ionic conduction that cannot be ignored in a quantitative analysis of electrical conductivity data.  相似文献   

18.
向军  王晓晖 《物理学报》2008,57(7):4417-4423
用固相反应法制备了Sm0.9Sr0.1AlO3-δ钙钛矿氧化物陶瓷.通过XRD,SEM和交流复阻抗谱以及氧浓差电池方法研究了样品的物相结构、微观形貌、电学性能及输运机理.结果表明,在1650℃烧结时,可以制备出单相的具有四方钙钛矿结构的氧化物Sm0.9Sr0.1AlO3-δ;1650℃烧结16 h时的Sm0.9Sr0.1AlO3-δ样品具有最高的相对密度和电导率,其值分别为96.7%和1.3×10-2S/cm(900℃),比未掺杂的SmAlO3的电导率大4个数量级左右,高温区电导活化能(T>670℃)小于低温区电导活化能(T<670℃);Sm0.9Sr0.1AlO3-δ在空气气氛中是一个氧离子和电子空穴的混合导体,氧离子迁移数在0.7左右,并随温度升高逐渐增加,氧离子电导活化能(0.95eV)大于空穴电导活化能(0.84eV),900℃时氧离子电导率为9.65×10-3S/cm. 关键词: 3')" href="#">SmAlO3 氧离子导电性 混合导体 活化能  相似文献   

19.
WOx films were prepared by reactive dc magnetron sputtering using tungsten target. Sputtering was carried out at a total pressure of 1.2 Pa using a mixture of argon plus oxygen in an effort to determine the influence of the oxygen partial pressure on structural and optical properties of the films. The deposition rate decreases significantly as the surface of the target is oxidized. X-Ray diffraction revealed the amorphous nature of all the films prepared at oxygen partial pressures higher than 1.71×10−3 Pa. For higher oxygen partial pressures, fully transparent films were deposited, which showed a slight increase in optical band gap with increasing oxygen partial pressure, while the refractive index was simultaneously decreased.  相似文献   

20.
《Solid State Ionics》2006,177(11-12):1015-1020
The electrical properties of CeNbO4+δ have been investigated at 1073–1223 K in the oxygen partial pressure range 10 17 to 0.36 atm. The conductivity and Seebeck coefficient behaviour indicates that, at oxygen chemical potentials close to atmospheric, tetragonal CeNbO4+δ possesses a mixed ionic and p-type electronic conductivity. The ion transference numbers under the p(O2) gradient of 0.93/0.21 atm, measured by the modified e.m.f. technique, are close to 0.4 decreasing in more reducing environments. The variations of partial ionic and electronic conductivities can be described in terms of the oxygen intercalation into the scheelite-type lattice, which results in increasing concentrations of both dominant charge carriers, oxygen interstitials and holes, when p(O2) increases. Reduction leads to p(O2)-independent electrical properties, followed by a drastic decrease in the conductivity at oxygen pressures below 10 15–10 9 atm due to a reversible transition into the monoclinic phase. Contrary to the zircon-type CeVOδ, no traces of the parent binary oxides were detected in the reduced cerium niobate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号