首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The crystal structure of the known compounds Ln5Re2O12 (Ln = Y, Gd, Dy–Lu) and the new isotypic terbium rhenate Tb5Re2O12 was determined from X‐ray data of a twinned crystal of Ho5Re2O12: B2/m, a = 1236.5(4) pm, b = 748.2(2) pm, c = 563.8(1) pm, γ = 107.73(3)°, Z = 2, R = 0.034 for 379 structure factors and 37 variable parameters. The rhenium atoms (oxidation number +4.5) have octahedral oxygen coordination. These ReO6 octahedra share edges, thus forming infinite strings with alternating short and long Re–Re distances: 243.6(2) and 320.1(2) pm. Of the three holmium positions two are surrounded by seven oxygen atoms and the third one has octahedral oxygen coordination. The crystal structure of Pr3ReO8 was refined from single‐crystal X‐ray data: P21/a, a = 1498.0(2) pm, b = 749.09(8) pm, c = 610.48(9) pm, γ = 110.39(1)°, R = 0.017 for 2082 F values and 110 variable parameters. It is isotypic with a structure first determined for Sm3ReO8. The new compounds Pr3Re2O10 and Pr4Re2O11 were prepared by reaction of elemental praseodymium with the metaperrhenate Pr(ReO4)3. They were characterized through their X‐ray powder diagrams. Pr3Re2O10 was found to be monoclinic: a = 778.47(9) pm, b = 773.62(9) pm, c = 706.10(8) pm, β = 114.77(1)°. It is isotypic with La3Os2O10 and La3Re2O10. Pr4Re2O11 crystallizes with Nd4Re2O11 type structure with the tetragonal lattice constants a = 1272.49(3) pm, c = 562.29(2) pm. The compounds Nd4Re2O11 and Sm4Re2O11 are confirmed. The magnetic properties of Ho5Re2O12, Tb5Re2O12, Pr3Re2O10, Pr4Re2O11, Nd4Re2O11, and Sm4Re2O11 were investigated with a Faraday balance. None of these compounds shows magnetic order above 200 K.  相似文献   

2.
La5Re3CoO16 and La5Re3NiO16 were synthesized by solid-state reaction and studied by SQUID magnetometry, heat capacity and powder neutron diffraction measurements. These two compounds belong to a series of isostructural Re-based pillared perovskites [Chi et al. J. Solid State Chem. 170 (2003) 165]. Magnetic susceptibility measurements indicate apparent short-range ferri or ferromagnetic correlations and possible long-range antiferromagnetic order for La5Re3CoO16 at 35 K, and at 38 and 14 K for La5Re3NiO16. Heat capacity measurements of the Co compound show a lambda anomaly, typical of long-range magnetic order, at 32 K. In contrast, the Ni compound displays a broader, more symmetric feature at 12 K in the heat capacity data, indicative of short-range magnetic order. Low-temperature powder neutron diffraction revealed contrasting magnetic structures. While both show an ordering wave vector, k=(0,0,1/2), in La5Re3CoO16, the Co2+ and Re5+ moments are ordered ferrimagnetically within the corner-shared octahedral layers, while the layers themselves are coupled antiferromagnetically along the c-axis, as also found in La5Re3MnO16 and La5Re3FeO16. In the case of the Ni material, the Re5+ and Ni2+ moments in the perovskite layers couple ferromagnetically and are canted 30° away from the c-axis, angled 45° in the ab-plane. The layers then couple antiferromagnetically at low temperature, a unique magnetic structure for this series. The properties of the La5Re3MO16 series, with M=Mn, Fe, Co, Ni and Mg are also reviewed.  相似文献   

3.
Two isostructural diarsenates, SrZnAs2O7 (strontium zinc diarsenate), (I), and BaCuAs2O7 [barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction. The three‐dimensional open‐framework crystal structure consists of corner‐sharing M2O5 (M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7 group shares its five corners with five different M2O5 square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine‐coordinated M1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of the M1O9, M2O5 and As2O7 groups of known isostructural diarsenates, adopting the general formula M1IIM2IIAs2O7 (M1II = Sr, Ba, Pb; M2II = Mg, Co, Cu, Zn) and crystallizing in the space group P21/n, are presented and discussed.  相似文献   

4.
The title compounds were prepared by reaction of the elemental components at high temperatures. They crystallize with a new structure type which was determined from single‐crystal X‐ray data of Tm13Ni25As19: P 6, a = 1621.9(4) pm, c = 387.78(8) pm, Z = 1, R = 0.025 for 3164 structure factors and 119 variable parameters. The refinement of the occupancy parameters suggested a mixed Tm/Ni occupancy for one metal position and defects for one nickel site resulting in the composition Tm12.57(1)Ni25.22(2)As19. These arsenides belong to a large structural family with a metal to metalloid ratio of 2 : 1.  相似文献   

5.
A combined structural, magnetic and thermoelectric study of polycrystalline ternary MIn2S4 (M = Mn, Fe, Co, Ni) thiospinels is presented. All compounds crystallize with MgAl2O4-type structure. Rietveld refinement analysis confirmed that the preferred crystallographic position of transition metal element changes from mainly tetrahedral 8a for Mn to exclusively octahedral 16d for Ni (i.e. increase of the inversion parameter). Magnetic susceptibility measurements revealed M-elements to possess 2+ oxidation state in MIn2S4. All these compounds order antiferromagnetically with Néel temperatures TN ranging from 5–13 K. The studied thiospinels are n-type semiconductors with large values of electrical resistivity ρ > 0.6 Ω · m at room temperature. An increase of the inversion parameter leads to a reduction of the determined activation energies, as well as to a more disorder-like behavior of thermal conductivity. The highest thermoelectric Figure of merit ZT was observed for MIn2S4 with M = Fe, Ni, which adopt inverse spinel structure.  相似文献   

6.
Four new compounds La5Re3MgO16 La5Re3FeO16 La5Re3CoO16 La5Re3NiO16 have been prepared by solid-state reaction and characterized by X-ray and neutron powder diffraction and SQUID magnetometry. Rietveld refinement revealed that the four compounds are isostructural with La5Re3MnO16 and crystallize in space group with cell parameters a=7.9370(3), 7.9553(5), 7.9694(7), and 7.9383(4) Å; b=7.9998(3), 7.9960(6), 8.0071(8), and 7.9983(5) Å; c=10.1729(4), 10.1895(7), 10.182(1), and 10.1732(6) Å; α=90.190(3)°, 90.270(3)°, 90.248(4) °, 90.287(3)°; β=94.886(2)°, 95.082(3)°, 94.980(4)°, 94.864(3)°; γ=89.971(4)°, 90.001(5)°, 89.983(6)°, 89.968(4)° for Mg, Fe, Co, and Ni, respectively. The structures are related to a layered perovskite. The layers of corner-sharing octahedra Re5+M2+O6 (M2+=Mg, Fe, Co, Ni) are pillared by diamagnetic edge-sharing octahedra dimers, Re2O10, involving a Re=Re double bond. Three crystallographically independent lanthanum atoms occupy the three-dimensional interstices. All compounds obey the Curie-Weiss law at sufficiently high temperatures with Curie constants or effective magnetic moments near the expected values for the combination of Re5+(S=1) and M2+(S=0, 2, 3/2, 1 for Mg, Fe, Co, and Ni, respectively). Weiss constants, θC, are negative (−575, −84, −71, and −217 K for Mg, Fe, Co, and Ni, respectively) indicating the predominance of antiferromagnetic exchange coupling. The phases for M=Fe, Co and Ni show long-range order at 155, 33, 36 and 14 K, respectively. Neutron diffraction discloses a magnetic structure for the Fe series member consisting of ferrimagnetic perovskite layers coupled antiparallel along the stacking c-axis, direction which is consistent with the magnetic structure found recently for La5Re3MnO16.  相似文献   

7.
Dirubidium pentacadmium tetraarsenide, Rb2Cd5As4, dirubidium pentazinc tetraantimonide, Rb2Zn5Sb4, and the solid‐solution phase dirubidium pentacadmium tetra(arsenide/antimonide), Rb2Cd5(As,Sb)4 [or Rb2Cd5As3.00(1)Sb1.00(1)], have been prepared by direct reaction of the component elements at high temperature. These compounds are charge‐balanced Zintl phases and adopt the orthorhombic K2Zn5As4‐type structure (Pearson symbol oC44), featuring a three‐dimensional [M5Pn4]2− framework [M = Zn or Cd; Pn is a pnicogen or Group 15 (Group V) element] built of linked MPn4 tetrahedra, and large channels extending along the b axis which host Rb+ cations. The As and Sb atoms in Rb2Cd5(As,Sb)4 are randomly disordered over the two available pnicogen sites. Band‐structure calculations predict that Rb2Cd5As4 is a small‐band‐gap semiconductor and Rb2Zn5Sb4 is a semimetal.  相似文献   

8.
Zusammenfassung Phasen der ZusammensetzungM 2P,M 2As undM 2(P1-xAsx) wurden untersucht. Dabei istM ein Übergangsmetall (M=Cr, Mn, Fe, Co, Ni) oder ein Gemisch solcher Metalle. Es treten tetragonale, hexagonale sowie orthorhombische Strukturtypen auf, die sich alle auf ein rhomboedrisches Grundelement zurückführen lassen, in dem die Metallatome pyramidal oder tetraedrisch von Metalloidatomen umgeben sind. Dabei zeigt sich, daß das Auftreten der Strukturen nicht mit der mittleren Zahl der 3d-Elektronen des Kationenanteils zusammenhängt. Ein Strukturwechsel tetragonal hexagonal orthorhombisch läßt sich hingegen auf steigende Wechselwirkung zwischen den Metallatomen zurückführen.
Structural transitions between phosphides, arsenides and arsenophoshides of the composition M2 P, M2 As and M2(P 1—xAsx)
A study has been made of phases of the compositionM 2P,M 2As, andM 2(P1-xAsx) whereM is a transition metal (Cr, Mn, Fe, Co, Ni) or a mixture of such metals. Tetragonal, hexagonal and orthorhombic structural types occur, which can all be referred to a rhombohedral primary structure, with metalloid atoms in a pyramidal or tetrahedral arrangement about the metal atoms. It is found that the occurrence of the structures is not related to the average number of 3d electrons of the cationic part, but that a structural variation tetragonal hexagonal orthorhombic can be ascribed to increasing interaction between the metal atoms.


Mit 7 Abbildungen

Gewidmet Herrn Prof. Dr.H. Nowotny in Bewunderung fü das Werk, das die Wiener Schule geschaffen hat.  相似文献   

9.
The preparation and thermal behaviour of two garnets of the type {Na3}[MIII2]·(As3)O12 (MIII = Cr, Fe) are described. Both compounds undergo a reversible conversion into a high-temperature phase which, for the case of MIII = Ga, is found as the sole structure type. There is no mixed-crystal formation between {Y3}[Fe2](Fe3)O12 and {Na3}[Fe2] · (As3)O12 Preliminary investigations were performed on the possible mixed-crystal formation between the Ga compound and the Cr and Fe garnet structure, respectively.  相似文献   

10.
Isotypic Borophosphates MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Compounds containing Tetrahedral Layers The isotypic compounds MII(C2H10N2) · [B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn) were prepared under hydrothermal conditions (T = 170 °C) from mixtures of the metal chloride (chloride hydrate, resp.), Ethylenediamine, H3BO3 and H3PO4. The orthorhombic crystal structures (Pbca, No. 61, Z = 8) were determined by X‐ray single crystal methods (Mg(C2H10N2)[B2P3O12(OH)]: a = 936.81(2) pm, b = 1221.86(3) pm, c = 2089.28(5) pm) and Rietveld‐methods (MII = Mn: a = 931.91(4) pm, b = 1234.26(4) pm, c = 2129.75(7) pm, Fe: a = 935.1(3) pm, b = 1224.8(3) pm, c = 2088.0(6) pm, Ni: a = 939.99(3) pm, b = 1221.29(3) pm, c = 2074.05(7) pm, Cu: a = 941.38(3) pm, b = 1198.02(3) pm, c = 2110.01(6) pm, Zn: a = 935.06(2) pm, b = 1221.33(2) pm, c = 2094.39(4) pm), respectively. The anionic part of the structure contains tetrahedral layers, consisting of three‐ and nine‐membered rings. The MII‐ions are in a distorted octahedral or tetragonal‐bipyramidal [4 + 2] (copper) coordination formed by oxygen functions of the tetrahedral layers. The resulting three‐dimensional structure contains channels running along [010]. Protonated Ethylenediamine ions are fixed within the channels by hydrogen bonds.  相似文献   

11.
On Hexagonal Perovskites with Cationic Vacancies. XXVII. Systems Ba4?xSrxBIIRe2□O12, Ba4B CaxRe2□O12, and Ba4?xLaxBIIRe2?xWx□O12 with BII = Co, Ni In the systems Ba4?xSrxBIIRe2□O12, Ba4BCaxRe2□O12 and Ba4?xLaxBIIRe2?xWx□O12 (BII = Co, Ni) hexagonal perovskites with a rhombohedral 12 L structure (general composition A4BM2□O12; sequence (hhcc)3; space group R&3macr;m) are observed. With the exception of Ba4NiRe2□O12 the octahedral net consists of BO6 single octahedra and M2□O12 face connected blocks (type 1). In type 2 (Ba4NiRe2□O12) the M ions are located in the single octahedra and in the center of the groups of three face connected octahedra. The two outer positions of the latter are occupied by B ions and vacancies in the ratio 1:1. The difference between type 1 and 2 are discussed by means of the vibrational and diffuse reflectance spectra.  相似文献   

12.
The rhenium cyano-bridged cluster complex with a composition of β-[{Ni(NH3)5}2{Re6Te8(CN)6}]−4H2O is obtained and structurally characterized. The compound pound crystallizes in the P $ P\bar 1 $ P\bar 1 triclinic space group with the unit cell parameters: a = 9.997(2) ?, b = 10.423(2) ?, c = 11.714(2) ?, α = 100.92(3)°, β = 111.87(3)°, γ = 98.05(3)°, V = 1082.1(4) ?3, Z = 1, d calc = 4.072 g/cm3. The rhenium atoms of the {Re6Te8} cluster core are coordinated by CN ligands to form the [Re6Te8(CN)6]4− cluster; two nitrogen atoms of CN ligands trans-positioned with respect to each other are coordinated to Ni atoms in the {Ni(NH3)5}2+ fragments to form the molecular complexes of [{Ni(NH3)5}2}Re6Te8(CN)6}]. The crystal structure is the H-bonded packing of these molecular complexes and crystallization water molecules.  相似文献   

13.
We report a new type of MAX phase (M=transition metals, A=main group elements, and X=C/N), Nb3As2C, designated as 321 phase. It differs from all the previous Mn+1AXn phases in that it consists of an alternate stacking of one MX layer and two MA layers in its unit cell, while only one MA layer is allowed in usual MAX phases. The new 321 phase exhibits a bulk modulus of Nb3As2C up to 225(3) GPa as determined by high‐pressure synchrotron X‐ray diffraction, one of the highest values among MAX phases. Isostructural 321 phases V3As2C, Nb3P2C, and Ta3P2C are also found to exist. First‐principles calculations reveal the outstanding elastic stiffness in 321 phases. Among all 321 phases, Nb3P2C is predicted to have the highest elastic properties. These 321 phases, represented by a chemical formula Mn+1AnX, were added as new members to the MAX family and their other properties deserve future investigations.  相似文献   

14.
Interaction of the tetrahedral chalcocyanide cluster anionic complexes of Re, K4[Re4Q4(CN)12] (Q=S, Se, Te), with Ni2+ cationic complexes with polydentate amines, such as ethylenediamine (En), diethylenetriamine (Dien), or triethylenetetraamine (Trien) was used to synthesize six novel complexes: [Ni(NH3)4(En)][{Ni(NH3)(En)2}Re4Te4(CN)12] · 2H2O, [{Ni(En)2}2Re4Se4(CN)12] · 3.5H2O, [Ni(NH3)3(Dien)]2[Re4Se4(CN)12] · 5.5H2O, [{Ni(NH3)2(Dien)}2Re4Te4(CN)12] · 2.5H2O. [Ni(NH3)2(Trien)][{Ni(NH3)(Trien)}Re4Se4(CN)12] · 2.5H2O, [{Ni(Trien)}2Re4S4(CN)12] · 3H2O. The complexes were studied by single-crystal X-ray diffraction analysis.  相似文献   

15.
Small single crystals of Re2P and Re3P4 were grown in a tin flux. Their crystal structures were refined from single crystal diffractometer data to residuals of R = 0.055 and R = 0.049, respectively. The new compound ReP2.3 was prepared. Re6P13 forms an extended solid solution with As up to Re6As10.7P2.3. Re3P4 is diamagnetic. ReP4 is a diamagnetic semiconductor with a band gap of 0.54 eV. Systematic trends in the structural chemistry of rhenium phosphides are discussed.  相似文献   

16.
Three new cyano-bridged compounds, viz., [{Cu(en)}{Cu(NH3)(en)}Re4Se4(CN)12]·{5H2O (1), [{Cu(dien)}2Re4Te4(CN)12]·9H2O (2), and [{Cu(trien)}2Re4Se4(CN)12]··5H2O (3), were synthesized by the reactions of the tetrahedral rhenium chalcocyanide cluster complexes K4[Re4Q4(CN)12] ((Q = Se or Te) with copper(II) cations in aqueous solutions containing ethylenediamine (en), diethylenetriamine (dien), or triethylenetetraamine (trien), respectively. Complex 1 has a ladder-tubular-like polymeric structure, in which two infinite chains are linked to each other by Re-CN-Cu bridges, compound 2 has a polymeric chain structure, and compound 3 has a molecular structure. The structures of all complexes were established by X-ray diffraction analysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2040–2044, October, 2004.  相似文献   

17.
Alkaline Metal Arsenides A3As11 (A = Rb, Cs): Preparation and Crystal Structures Rb3As11 and Cs3As11 were synthesized from the elements and the crystal structures of the ordered room temperature form were characterized via single crystal x‐ray studies. In the Zintl phases the As atoms form chiral ufosan‐anions As with As‐As distances ranging from 238 to 248 pm. Like K3As11 Rb3As11 crystallizes with the Na3P11 structure type (orthorhombic, space group Pbcn, a = 1108.2(2), b = 1533.5(3), c = 1060.1(2) pm, Z = 4), whereas the Cs compound (monoclinic, space group C2/c, a = 1324.5(7), b = 1524.5(9), c = 1937.2(11) pm, β = 95.29(1)°, Z = 8) forms a new structure type. The crystallographic relationship between the two structure types and the anion packings in the plastic crystalline high temperature forms are discussed.  相似文献   

18.
The equilibrium geometries and the vibration frequencies of M2As and M2Br+ (M = Cu, Ag, Au) are calculated at the Hartree–Fock (HF) and the second‐order Møller–Plesset (MP2) levels with pseudopotentials. The calculated results indicate that the species have a bent structure (C2v). The electron correlation corrections on the geometrical structure are investigated at the MP2 level, the bond angles are reduced by 10°–20° for considered species. The electron correlation effects on the geometry of the Au2As are studied particularly at MP2, MP3, MP4, CCSD and CCSD(T) levels. Comparing the species containing Ag and Au, the relativistic effects slightly short the bond lengths of the species. The bonding possibility of the Au2As is predicted. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 80: 38–43, 2000  相似文献   

19.
Preparation, Properties, and Molecular Structures of a Rigid Tridentate Chelate Ligand N, N′-Bis(diphenylphosphino)-2, 6-diaminopyridine with MII and M0 Transition Metals [MII = Ni, Pd, Pt; M0 = Cr, Mo, W] The reaction of chlorophenylphosphane and 2, 6-Diaminopyridine give N, N′-Bis-(diphenylphosphino)-2, 6-diaminopyridine (PNP). Two types of complexes [M(PNP)Cl]Cl · L (M = Ni, L = H2O; M = Pd, L = C2H5OH; M = Pt) and mer-[M(PNP)(CO)3] · 2 THF (M = Cr, Mo, W) have been prepared using PNP. These coordination compounds have been characterized by means of i.r., u.v., 31P and 1H n.m.r. measurements. The determination of the molecular structure of the two triclinic substances mer-[Mo(PNP)(CO)3] · 2 THF and [Ni(PNP)Cl]Cl · H2O show that the octahedral Mo(d6) and the square planar nickel (d8) compounds contain a nearly planar tridentate chelate ring system (two fused five-membered rings of the type ) in which the observed bond distances are in accordance with a π electron delocalization effect. The observed gram susceptibility of the diamagnetic Ni(d8) compound remains unchanged between 293 and 410 K. The relative activation property for a homogenous catalytic standard hydrogenation reaction of styrene to ethylbenzene decreases in series of catalysts of type [M(PNP)Cl]Cl · L with MII = Ni > Pd > Pt.  相似文献   

20.
Powder samples and single crystals of the borides M0.5Ru6.5B3 (M = Cr, Mn, Co, Ni) were synthesized by arc‐melting the elements in a water‐cooled copper crucible under argon. The new phases were structurally characterized by single‐crystal and powder X‐ray diffraction as well as EDX‐Analyses. They crystallize in the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z = 2) and a pronounced site preferential M/Ru substitution is observed. Magnetic properties of the compounds were investigated and Pauli paramagnetism was observed in all cases. However, a strong temperature dependency is subsequently observed in Mn0.5Ru6.5B3 below 250 K, but no hint of magnetic ordering was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号