首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许小勇  潘靖  胡经国 《物理学报》2007,56(9):5476-5482
研究了交换偏置双层膜中界面存在二次以及双二次交换耦合下反铁磁磁矩转动及其交换各向异性.结果表明,其反铁磁膜中的磁矩转动存在可逆“恢复行为”、不可逆“半转动行为”、不可逆“倒转行为”以及不可逆“半倒转行为”四种情形,四种情形的出现强烈地依赖于界面二次、双二次耦合以及反铁磁膜厚度.其中可逆恢复行为情况下,系统出现交换偏置,而不可逆的半转、半倒转以及倒转情形,系统不出现交换偏置.特别地,在界面处仅存在双二次耦合的情形下,其界面双二次耦合常数J2≤0.1 σ关键词: 反铁磁自旋结构 交换各向异性 界面双二次耦合 交换偏置  相似文献   

2.
The structure dependence of exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayers has been investigated in detail by extending Slonczewski's 'proximity magnetism' idea. Here three important parameters are discussed for FM/AF bilayers, i.e. interracial bilinear exchange coupling J1, interracial biquadratic (spin-flop) exchange coupling J2 and antiferromagnetic layer thickness tAF. The results show that both the occurrence and the variety of the exchange bias strongly depend on the above parameters. More importantly, the small spin-flop exchange coupling may result in an exchange bias without the interracial bilinear exchange coupling. However, in general, the spin-flop exchange coupling cannot result in the exchange bias. The corresponding critical parameters in which the exchange bias will occur or approach saturation are also presented.  相似文献   

3.
研究铁磁/反铁磁/铁磁三层膜中界面存在二次以及双二次交换耦合下反铁磁磁矩转动及其交换各向异性.结果表明,其反铁磁膜中的磁矩转动存在可逆"恢复行为"、不可逆"连续倒转行为"以及不可逆"中断倒转行为"三种情形,三种情形的出现强烈地依赖于两界面处的线性耦合和双二次耦合.钉扎界面的交换耦合与旋转界面的交换耦合相互竞争,当钉扎界面耦合占主导时,反铁磁磁矩发生可逆"恢复行为",系统出现交换偏置.在旋转界面耦合占主导情形下,其线性耦合与双二次耦合也相互竞争,分别导致反铁磁磁矩发生不可逆"连续倒转行为"和不可逆"中断倒转行为",系统都不出现交换偏置,但矫顽场都得以增强.相关结论为实验上观测的磁滞能耗以及界面垂直耦合提供了可能的解释.  相似文献   

4.
In this paper we provide a review and overview of a series of works generated in our laboratory over the last 5 years. These works have described the development and evolution of a new paradigm for exchange bias in polycrystalline thin films with grain sizes in the range 5-15 nm. We have shown that the individual grains in the antiferromagnetic (AF) layer of exchange bias systems contain a single AF domain and reverse over an energy barrier which is grain volume dependent. We show that the AF grains are not coupled to each other and behave independently. Understanding this process and using designed measurement protocols has enabled us to determine unambiguously the blocking temperature distribution of the AF grains, the anisotropy constant (KAF) of the AF, understand the AF grain-setting process, and predict its magnetic viscosity. We can explain and predict the grain size and film thickness dependence of the exchange field Hex. We have also studied interfacial effects and shown that there are processes at the interface, which can occur independently of the bulk of the AF grains. We have seen these effects via studies of trilayers and also via the field dependence of the setting process which does not affect the blocking. From separate experiments we have shown that the disordered interfacial spins exist as spin clusters analogous to a spin glass. These clusters can order spontaneously at low temperatures or can be ordered by the setting field. We believe it is the degree of order of the interfacial spins that gives rise to the coercivity in exchange bias systems. Based on this new understanding of the behaviour of the bulk of the grains in the antiferromagnet and the interfacial spins we believe that we have now a new paradigm for the phenomenon of exchange bias in sputtered polycrystalline thin films. We emphasize that the phenomenological model does not apply to core-shell particles, epitaxial single-crystal films and large grain polycrystalline films.  相似文献   

5.
Experimental evidence for misalignments between F anisotropy axes, AF anisotropy axes and the exchange bias field direction is shown in a CoFe/Ni0.38O0.62 system. The angular dependence of the remanent magnetization, the exchange bias field and the coercive field is studied as a function of the diluted NiO thickness. The exchange coupling leads to misalignments between the applied field during growth, the exchange bias field and the coercive field directions. It shows that two different interfacial spin frustrations are present, corresponding to pinned and unpinned spins contributions of the diluted NiO.  相似文献   

6.
The study of layered magnetic structures is one of the hottest topics in magnetism due to the growing attraction of applications in magnetic sensors and magnetic storage media, such as random access memory. For almost half a century, new discoveries have driven researchers to re-investigate magnetism in thin film structures. Phenomena such as giant magnetoresistance, tunneling magnetoresistance, exchange bias and interlayer exchange coupling led to new ideas to construct devices, based not only on semiconductors but on a variety of magnetic materials Upon cooling fine cobalt particles in a magnetic field through the Néel temperature of their outer antiferromagnetic oxide layer, Meiklejohn and Bean discovered exchange bias in 1956. The exchange bias effect through which an antiferromagnetic AF layer can cause an adjacent ferromagnetic F layer to develop a preferred direction of magnetization, is widely used in magnetoelectronics technology to pin the magnetization of a device reference layer in a desired direction. However, the origin and effects due to exchange interaction across the interface between antiferromagneic and ferromagnetic layers are still debated after about fifty years of research, due to the extreme difficulty associated with the determination of the magnetic interfacial structure in F/AF bilayers. Indeed, in an AF/F bilayer system, the AF layer acts as “the invisible man” during conventional magnetic measurements and the presence of the exchange coupling is evidenced indirectly through the unusual behavior of the adjacent F layer. Basically, the coercive field of the F layer increases in contact with the AF and, in some cases, its hysteresis loop is shifted by an amount called exchange bias field. Thus, AF/F exchange coupling generates a new source of anisotropy in the F layer. This induced anisotropy strongly depends on basic features such as the magnetocrystalline anisotropy, crystallographic and spin structures, defects, domain patterns etc of the constituant layers. The spirit of this topical issue is, for the first time, to gather and survey recent and original developments, both experimental and theoretical, which bring new insights into the physics of exchange bias. It has been planned in relation with an international workshop exclusively devoted to exchange bias, namely IWEBMN’04 (International Workshop on Exchange Bias in Magnetic Nanostructures) that took place in Anglet, in the south west of France, from 16th to 18th September 2004. The conference gathered worldwide researchers in the area, both experimentalists and theoreticians. Several research paths are particularly active in the field of magnetic exchange coupling. The conference, as well as this topical issue, which was also open to contributions from scientists not participating in the conference, has been organized according to the following principles: 1. Epitaxial systems: Since the essential behavior of exchange bias critically depends on the atomic-level chemical and spin structure at the interface between the ferromagnetic and antiferromagnetic components, epitaxial AF/F systems in which the quality of the interface and the crystalline coherence are optimized and well known are ideal candidates for a better understanding of the underlying physics of exchange bias. The dependence of exchange bias on the spin configurations at the interfaces can be accomplished by selecting different crystallographic orientations. The role of interface roughness can also be understood from thin-film systems by changing the growth parameters, and correlations between the interface structure and exchange bias can be made, as reported in this issue. 2. Out-of-plane magnetized systems: While much important work has been devoted to the study of structures with in-plane magnetization, little has been done on the study of exchange bias and exchange coupling in samples with out-of-plane magnetization. Some systems can exhibit either in-plane or out-of-plane exchange bias, depending on the field cooling direction. This is of particular interest since it allows probing of the three-dimensional spin structure of the AF layer. The interface magnetic configuration is extremely important in the perpendicular geometry, as the short-range exchange coupling competes with a long-range dipolar interaction; the induced uniaxial anisotropy must overcome the demagnetization energy to establish perpendicular anisotropy films. Those new studies are of primary importance for the magnetic media industry as perpendicular recording exhibits potential for strongly increased storage densities. 3. Parameters tuning exchange bias in polycrystalline samples and magnetic configurations: Different parameters can be used to tune the exchange bias coupling in polycrystalline samples similar to those used in devices. Particularly fascinating aspects are the questions of the appearance of exchange bias or coercivity in ferromagnet/antiferromagnet heterostructures, and its relation to magnetic configurations formed on either side of the interface. Several papers report on either growth choices or post preparation treatments that enable tuning of the exchange bias in bilayers. The additional complexity and novel features of the exchange coupled interface make the problem particularly rich. 4. Dynamics and magnetization reversal: Linear response experiments, such as ferromagnetic resonance, have been used with great success to identify interface, surface anisotropies and interlayer exchange in multilayer systems. The exchange bias structure is particularly well suited to study because interface driven changes in the spin wave frequencies in the ferromagnet can be readily related to interlayer exchange and anisotropy parameters associated with the antiferromagnet. Because the exchange bias is intimately connected with details of the magnetization process during reversal and the subsequent formation of hysteresis, considerations of time dependence and irreversible processes are also relevant. Thermal processes like the training effect manifesting itself in changes in the hysteretic characteristics depending on magnetic history can lead to changes in the magnetic configurations. This section contains an increasing number of investigations of dynamics in exchange bias coupled bilayers, and in particular those of the intriguing asymmetric magnetization reversal in both branches of a hysteresis loop. The Editors of the topical issue: Alexandra Mougin Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, F-91405 Orsay, France Stéphane Mangin Laboratoire de Physique des Matériaux, UMR CNRS 7556, Université Henri Poincaré, F-54506 Nancy, France Jean-Francois Bobo Laboratoire de Physique de la Matière Condensée - NMH, FRE 2686 CNRS ONERA, 2 avenue Edouard Belin, F-31400 Toulouse, France Alois Loidl Experimentalphysik V, EKM, Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86135, Augsburg, Germany  相似文献   

7.
For the ferromagnetic (FM)/antiferromagnetic (AFM) bilayers, both negative and positive exchange bias HE have been observed for low and high cooling field HCF, respectively. The thickness dependence of HE and coercivity HC have been investigated for the cases of negative and positive HE. It is found that the negative HE and the positive one have similar FM thickness dependence that is attributed to the interfacial nature of exchange bias. However, the AFM thickness dependence of positive HE is completely contrary to that of the negative one, which clearly demonstrates that the AFM spins play different roles for the cases of positive and negative HE. In particular, the AFM thickness of positive HE was first highlighted by an AFM spin canting model. These results should be attributed to the interfacial spin configuration after field cooling procedure.  相似文献   

8.
Basing on the two-spin-per-site Heisenberg model, the effect of single-ion uniaxial anisotropy on the phase diagrams of magnetic system in the presence of internal spin fluctuation has been investigated by use of the mean field theory. It was found that single-ion uniaxial anisotropy has important effect on the phase digrams. In the ferromagnetic case (J3>0) the positive single-ion uniaxial anisotropies (D) suppress the internal spin fluctuation and raise the phase trasition temperature, and negative single-ion uniaxial anisotropies (D) increase the internal spin fluctuation and reduce the phase trasition temperature. In the antiferromagnetic case (J3<0), there exist two critical values Jc1 and Jc2 (|Jc2|<|Jc1|) in the positive D values. In the |J3|<|Jc2| range intra-spin exchange coupling prevails inter-spin exchange coupling, the positive D values suppress the internal spin fluctuation and raise the phase transition temperature. In the |J3|>|Jc1| range the two sub-spins behave as a rigid spin and the positive D values make the reduction of the phase transition temperature. We also observe that the larger D values make the range of internal spin fluctuation to move towards the larger |J3| range.  相似文献   

9.
熊知杰  王怀玉  丁泽军 《中国物理》2007,16(7):2123-2130
The exchange bias of bilayer magnetic films consisting of ferromagnetic (FM) and antiferromagnetic (AFM) layers in an uncompensated case is studied by use of the many-body Green's function method of quantum statistical theory. The effects of the layer thickness and temperature and the interfacial coupling strength on the exchange bias HE are investigated. The dependence of the exchange bias HE on the FM layer thickness and temperature is qualitatively in agreement with experimental results. When temperature varies, both the coercivity HC and HE decrease with the temperature increasing. For each FM thickness, there exists a least AFM thickness in which the exchange bias occurs, which is called pinning thickness.  相似文献   

10.
We observed an exchange bias effect in La0.5Ca0.5FeO3 perovskite compound.The exchange bias is associated with the charge disproportionation transition from Fe4+ions to Fe3+and Fe5+ions below 175 K.The competition between the ferromagnetic interaction of Fe3+and Fe5+ions and the antiferromagnetic one of Fe3+and Fe3+ions results in a unidirectional anisotropy in the cluster-glass system.An antiferromagnetically interfacial exchange coupling constant Ji1.95 meV at the cluster-glass region was yielded by fitting the cooling field-dependence of the exchange bias field.  相似文献   

11.
Strong effects of ferromagnetic layer (FMCo, and Ni80Fe20) on the magnitude and blocking temperature of exchange coupling are observed in antiferromagnetic NiO-based films NiO (5 nm)/FM1 (t nm)/FM2 (6-t nm). The existence of interfacial spins configuration in glass-like state and FM anisotropy are proposed to interpret a minimum shown in thermal magnetization curves for films with strong exchange coupling effect. The microstructural change of FM layer and the long-range interaction of exchange bias are taken into account to explain a strong dependence of exchange coupling energy density on the thickness tF of FM layer when tF<5 nm.  相似文献   

12.
The spin exchange interactions of the triangular spin tube system CsCrF4 were evaluated by performing mapping analysis on the basis of density functional theory calculations. Our results show that the exchange J1 for the triangular ring and the exchange J2 along the chain are both antiferromagnetic with the ratio J1/J2≈0.5, so the spin gap of CsCrF4 is too small to be experimentally detected. This finding is consistent with the experimental observation and theoretical analysis. The possible ways of preparing a triangular spin tube with observable spin gap was discussed.  相似文献   

13.
The interface exchange coupling between ferromagnetic (F) and antiferromagnetic (AF) materials is interesting in itself and has also attracted recent attention in relation to the exchange bias phenomenon. A major difficulty in developing a reliable exchange bias theory lies in the fact that both the F and AF interface characteristics (geometry and physical parameters) are hard to determine experimentally and complicated to estimate theoretically. We adopt in this paper two alternative interface configurations to obtain upper and lower bounds for the computed values of the exchange coupling across the interface between metallic Fe and insulating FeF2, derived on the basis of ab initio calculations implemented for a periodic supercell. Electronic structures and total energies were computed within density functional theory using the generalized gradient approximation for the exchange correlation potential. We expect the results obtained to be useful in model simulations with larger unit cells and non-collinear spins.  相似文献   

14.
At T = 0 and in a sufficiently large field, the nearest-neighbor antiferromagnetic Ising chain undergoes a first-order spin-flop transition into the ferromagnetic phase. We consider its smearing under the random-bond disorder such that all independent random bonds are antiferromagnetic (AF). It is shown that the ground-state thermodynamics of this random AF chain can be described exactly for an arbitrary distribution P(J) of AF bonds. Moreover, the site magnetizations of finite chains can be found analytically in this model. We consider a continuous P(J) that is zero above some ?J 1 and behaves near it as (?J 1?J)λ, λ > ?1. In this case, the ferromagnetic phase emerges continuously in a field H > H c = 2J 1. At 0 > λ > ?1, it has the usual second-order anomalies near H c with the critical indices obeying the scaling relation and depending on λ. At λ > 0, higher-order transitions occur (third, fourth, etc.), marked by a divergence of the corresponding nonlinear susceptibilities. In the chains with an even number of spins, the intermediate “bow-tie” phase with linearly modulated AF order exists between the AF and ferromagnetic phases at J 1 < H < H c . Its origin can be traced to the infinite correlation length of the degenerate AF phase from which it emerges. This implies the existence of similar inhomogeneous phases with size- and form-dependent order in a number of other systems with infinite correlation length. The possibility to observe the signs of the “bow-tie” phase in low-T neutron diffraction experiments is discussed.  相似文献   

15.
The demagnetization processes of antiferromagnetically exchange-coupled hard/soft/hard trilayer structures have been studied based on the discrete one-dimensional atomic chain model and the linear partial domain-wall model. It is found that, when the magnetic anisotropy of soft layer is taken into account, the changes of the soft layer thickness and the interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible magnetic exchange-spring process. For the trilayer structures with very thin soft layer, the demagnetization process exhibits typical reversible exchange-spring behavior. However, as the thickness of soft layer is increased, there is a crossover point tc, after which the process becomes irreversible. Similarly, there is also a critical interfacial exchange coupling constant Ashc, above which the exchange-spring process is reversible. When Ash<Ashc, the irreversible exchange-spring process is achieved. The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling Ash and soft layer thickness Ns.  相似文献   

16.
Magnetic and structural properties in [MnPd/Co]10 multilayers deposited onto Si(1 1 1) substrates have been investigated. The dependences of anisotropy and exchange bias on the thicknesses of both MnPd and Co layers have been studied. In most of the samples, the out-of-plane magnetic anisotropy and both large out-of-plane and in-plane exchange biases have been observed at cryogenic temperature below the blocking temperature TB≈240 K. With appropriate MnPd and Co thicknesses, we have obtained samples with a large out-of-plane exchange bias along with a large out-of-plane magnetic anisotropy. The origin of the out-of-plane magnetic anisotropy in the samples has been suggested to be due to the formation of CoPd interfacial alloys which have tensile in-plane strains, while the spin structure of the antiferromagnetic layer at the interface which is believed to be responsible for exchange bias may be the same as that of the bulk material. Also, the present study shows that the interplay between the out-of-plane magnetic anisotropy and exchange bias is evident in our multilayers and plays an important role in the out-of-plane exchange-bias mechanism.  相似文献   

17.
The effect of optimum dilution of antiferromagnetic (AF)/ferromagnetic (FM) interface necessary for observance of positive exchange bias in ion-beam sputtered Si/Ir22Mn78 (t AF = 12, 18, 24 nm)/Co20Fe60B20(t FM = 6,9,15 nm) exchange coupled bilayers is investigated by magnetic annealing at 380, 420 and 460 °C for 1 h at 5 × 10-6 Torr in presence of 500 Oe magnetic field. While the coercivity of the exchange coupled FM layer decreases with the increase in annealing temperature irrespective of the value of t AF or t FM, the hysteresis loops however shift by ≈+ 10 Oe whenever the coercivity drops in the 10–15 Oe range. This is consistent with the phase diagram of exchange bias field and coercivity derived from Meiklejohn and Bean model. The X-ray diffraction and X-ray reflectivity measurements confirmed that the texture, grain size and interface roughness of IrMn/CoFeB bilayers are thickness dependent and are correlated to the observed magnetic response of the bilayers. The results establish that optimum dilution of the IrMn/CoFeB interface by thermally diffused Mn-spins is necessary in inducing the effective coupling between the IrMn domains and diluted CoFeB layer. It is further shown that the annealing temperature required for the optimum dilution of the CoFeB interface critically depends on the thickness of the layers.  相似文献   

18.
The competition between spin glass (SG), antiferromagnetism (AF) and Kondo effect is studied here in a model which consists of two Kondo sublattices with a Gaussian random interaction between spins in different sublattices with an antiferromagnetic mean J 0 and standard deviation J. In the present approach there is no hopping of the conduction electrons between the sublattices and only spins in different sublattices can interact. The problem is formulated in the path integral formalism where the spin operators are expressed as bilinear combinations of Grassmann fields which can be solved at mean field level within the static approximation and the replica symmetry ansatz. The obtained phase diagram shows the sequence of phases SG, AF and Kondo state for increasing Kondo coupling. This sequence agrees qualitatively with experimental data of the Ce2Au1-x Co x Si3 compound.Received: 9 April 2003, Published online: 9 September 2003PACS: 05.50.+q Lattice theory and statistics; Ising problems - 64.60.Cn Order disorder transformations; statistical mechanics of model systems  相似文献   

19.
The interlayer exchange coupling between Co/Pt perpendicular-to-plane magnetized layers across a thin IrMn spacer layer was experimentally studied. In contrast to earlier studies on interlayer coupling through antiferromagnetic NiO, which revealed an oscillatory coupling behavior as a function of NiO thickness, a ferromagnetic coupling was observed here in the range of IrMn thickness between 0.6 and 1.5 nm and antiferromagnetic between 1.5 and 2.5 nm. The antiferromagnetic coupling is attributed to an orange peel magnetostatic mechanism whereas the ferromagnetic coupling is attributed to an out-of-plane polarization of the antiferromagnetic IrMn layer induced by the interfacial exchange interaction with the adjacent out-of-plane ferromagnetic layers. Measurements of hysteresis loops versus temperature show that the coupling vanishes at 510 K for tIrMn=1 nm. This critical temperature is far below the Néel temperature of bulk IrMn, but above the blocking temperature of IrMn/Co bilayers at such thickness. Using a one-dimensional model describing a partial domain wall in the antiferromagnet, we explain the coupling in terms of an out-of-plane tilt of the Mn moments at the IrMn/(Co/Pt) interfaces yielding a weak net polarization of the IrMn. Finally, the non-oscillatory decay of the coupling was attributed to the compensated spin structure of the IrMn in the parallel to the interfaces.  相似文献   

20.
A model for the temperature dependence of exchange bias and coercivity in epitaxial ferromagnetic (FM)/ antiferromagnetic (AFM) bilayers is developed. In this model, the interface coupling includes two contributions, the direct coupling and the spin-flop coupling. The temperature dependence arises from the thermal disturbance to the system, involved in the thermal fluctuations of magnetization of AFM grains and the temperature modulation of the relevant magnetic parameters. In addition, the randomness of original orientations of easy axes of AFM grains after field cooling is taken into account. A self-consistent calculation scheme is proposed and numerical treatment is carried out. The results show that the temperature dependence of exchange bias and coercivity is closely related to the sizes of AFM grains and the interface exchange coupling constants. Especially, the exchange bias will have a peak and the blocking temperature will increase if the spin-flop coupling plays a role. On the other hand, the original orientation distribution of easy axes of AFM grains will affect exchange bias and coercivity prominently. The prediction has been well supported by experiments.Received: 12 May 2004, Published online: 31 August 2004PACS: 75.30.Et Exchange and superexchange interactions - 75.50.Ee Antiferromagnetics - 75.30.Gw Magnetic anisotropy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号