首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

2.
We have studied In-stabilized c(8 × 2)-reconstructed InAs(1 0 0) and InSb(1 0 0) semiconductor surfaces, which play a key role in growing improved III–V interfaces for electronics devices, by core-level photoelectron spectroscopy and first-principles calculations. The calculated surface core-level shifts (SCLSs) for the ζ and ζa models, which have been previously established to describe the atomic structures of the III–V(1 0 0)c(8 × 2) surfaces, yield hitherto not reported interpretation for the As 3d, In 4d, and Sb 4d core-level spectra of the III–V(1 0 0)c(8 × 2) surfaces, concerning the number and origins of SCLSs. The fitting analysis of the measured spectra with the calculated ζ and ζa SCLS values shows that the InSb spectra are reproduced by the ζ SCLSs better than by the ζa SCLSs. Interestingly, the ζa fits agree better with the InAs spectra than the ζ fits do, indicating that the ζa model describes the InAs surface better than the InSb surface. These results are in agreement with previous X-ray diffraction data. Furthermore, an introduction of the complete-screening model, which includes both the initial and final state effects, does not improve the fitting of the InSb spectra, proposing the suitability of the initial-state model for the SCLSs of the III–V(1 0 0)c(8 × 2) surfaces. The found SCLSs are discussed with the ab initio on-site charges.  相似文献   

3.
The c(4 × 2) structures in (0 0 1) surfaces of Si and Ge have been studied by low-energy electron diffraction (LEED). Using a proper cleaning method for the Si surface, we were able to observe clear c(4 × 2) LEED patterns up to incident energy of ∼400 eV as well as the Ge surface. Extensive experimental intensity-voltage curves allowed us to optimize the asymmetric dimer model up to the eighth layer (including the dimer layer) in depth in the dynamical LEED calculation. Optimized structural parameters are almost the same for the Si and Ge except for the height of the buckled-up atom of the asymmetric dimer. For the Ge surface, the structural parameters are in excellent agreement with those obtained by a previous theoretical calculation. The tilt angle and bond length of the dimer are 18 ± 1 (19 ± 1)° and 2.4 ± 0.1 (2.5 ± 0.1) Å for the Si(0 0 1) (Ge(0 0 1)), respectively.  相似文献   

4.
We examine the Sb incorporation and resulting surface reconstructions of Sb and GaSb deposited on GaAs(0 0 1). These films exhibit a mixed surface reconstruction of α2(2 × 4) and α(4 × 3). Initially, Sb reacts with Ga on the surface to form 2D islands of GaSb with an α(4 × 3) surface reconstruction. The 2D islands grow to a critical size of 30 nm2, beyond which the atomic surface structure of the 2D island transforms to a α2(2 × 4) reconstruction in order to reduce the strain induced surface energy. This transformation is limited by the availability of Ga, which is necessary in higher quantities for the α2(2 × 4) reconstruction than for the α(4 × 3). The transformation results in a mixed α2(2 × 4)-α(4 × 3) surface where the surface reconstruction is coupled to the surface morphology, which may in the future provide a pathway for self-assembly of structures.  相似文献   

5.
Y. Fukuda  T. Kuroda  N. Sanada 《Surface science》2007,601(23):5320-5325
A soft X-ray appearance potential spectroscopy (SXAPS) apparatus with high sensitivity was built to measure non-derivative spectra. SXAPS spectra (non-derivative) of Ti 2p and O 1s for TiO2(1 1 0)-1 × 2 and (0 0 1)-1 × 1 surfaces have been measured using low incident currents (about 10 μA/cm2) and a photon counting mode. Density of empty states on Ti and O sites are deduced by self-deconvoluting the spectra. The self-deconvoluted SXAPS spectra are qualitatively similar to those measured by X-ray absorption spectroscopy (XAS). The Ti 2p3/2 spectrum shows two strong peaks which correspond to t2g and eg states. For the O 1s spectrum two strong peaks near the threshold are also found which can be ascribed to O 2pπ and O 2pσ states. These results suggest that the spectra almost obey the dipole selection rule, so-called the “approximate dipole selection rule”. The SXAPS spectra of Ti 2p and O 1s for the (1 1 0) and (0 0 1) surfaces resemble qualitatively, which is consistent with the XAS results. The spectra measured on the (1 1 0)-1 × 2 surface at an incident angle of 45° off normal to the surface and on the (1 1 0) surface sputtered by Ar ions indicate that SXAPS is very sensitive to the surface electronic states.  相似文献   

6.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

7.
The atomic and electronic structures of the Si(0 0 1)-c(4 × 4) surface have been studied by scanning tunneling microscopy (STM) and density functional theory (DFT). To explain the experimental bias dependent STM observations, a modified mixed ad-dimer reconstruction model is introduced. The model involves three tilted Si dimers and a carbon atom incorporated into the third subsurface layer per c(4 × 4) unit cell. The calculated STM images show a close resemblance to the experimental ones.  相似文献   

8.
We have determined the structure of the 4H-SiC(0 0 0 1)-3 × 3 surface after exposure to small amounts of molecular oxygen at room temperature using surface X-ray diffraction. The 3 × 3 reconstruction remains until at least an exposure of 10,000 L, but the diffracted intensities change, indicating structural changes. Comparison of the Patterson maps of the clean and oxidized surface shows that the main changes occur at the Si tetramer on top of the 3 × 3 surface. Atomic positions for several models were fitted to the experimental data. A model in which oxygen atoms are inserted into the Si tetramer gives the best fit to the experimental data. The best-fit atomic positions agree well with those obtained using density functional calculations.  相似文献   

9.
Plateaus in water adsorption isotherms on hydroxylated BeO surfaces suggest significant differences between the hydroxylated (1 0 0) and (0 0 1) surface structures and reactivities. Density functional theory structures and energies clarify these differences. Using relaxed surface energies, a Wulff construction yields a prism crystal shape exposing long (1 0 0) sides and much smaller (0 0 1) faces. This is consistent with the BeO prisms observed when beryllium metal is oxidized. A water oxygen atom binds to a single surface beryllium ion in the preferred adsorption geometry on either surface. The water oxygen/beryllium bonding is stronger on the surface with greater beryllium atom exposure, namely the less-stable (0 0 1) surface. Water/beryllium coordination facilitates water dissociation. On the (0 0 1) surface, the dissociation products are a hydroxide bridging two beryllium ions and a metal-coordinated hydride with some surface charge depletion. On the (1 0 0) surface, water dissociates into a hydroxide ligating a Be atom and a proton coordinated to a surface oxygen but the lowest energy water state on the (1 0 0) surface is the undissociated metal-coordinated water. The (1 0 0) fully hydroxylated surface structure has a hydrogen bonding network which facilitates rapid proton shuffling within the network. The corresponding (0 0 1) hydroxylated surface is fairly open and lacks internal hydrogen bonding. This supports previous experimental interpretations of the step in water adsorption isotherms. Further, when the (1 0 0) surface is heated to 1000 K, hydroxides and protons associate and water desorbs. The more open (0 0 1) hydroxylated surface is stable at 1000 K. This is consistent with the experimental disappearance of the isotherm step when heating to 973 K.  相似文献   

10.
Structural and electronic properties of self-assembled monolayer with 4-(4-amino-phenylazo) benzoic acid (APABA) on the Si(0 0 1)-(4 × 2) surface are investigated by ab initio calculation based on density functional theory. For the APABA chemisorption on the silicon surface, we have assumed two different binding sites: (i) amino group of molecule and (ii) carboxyl group of molecule. Considering amino-site, we have assumed two possible models for the chemisorption of molecules on the Si(0 0 1)-(4 × 2) surface: (i) an intrarow position between two neighboring Si dimers in the same dimer row (Model I), (ii) on-dimer position (Model II). We have found that Model II is 1.10 eV energetically more favorable than Model I. The Si-N bond length was calculated as 1.85 Å which is in excellent agreement with the sum of the corresponding covalent radii of 1.87 Å. Considering carboxyl-site, we have assumed exactly the same model as mentioned above. Again we have found that Model II is energetically favorable than Model I. The calculated bond lengths for Si-O and O-C are 1.76 and 1.35 Å, respectively.  相似文献   

11.
The bismuth-stabilized (2 × 4)-reconstructed InP(1 0 0) surface [Bi/InP(1 0 0)(2 × 4)] has been studied by synchrotron-radiation core-level photoelectron spectroscopy. The spectra are compared with previous core-level data obtained on a clean InP(1 0 0)(2 × 4) surface. The findings support that the P 2p surface-core-level shift (SCLS) of the clean InP(1 0 0)(2 × 4), which has higher kinetic energy than the bulk emission, arises from the third-layer P atoms and that the second P 2p SCLS, which has lower kinetic energy than the bulk, arises from the top-layer P atoms. Similar In 4d SCLSs are found on the clean and Bi-stabilized InP(1 0 0)(2 × 4) surfaces, indicating that these shifts contain contributions of the In atoms that lie in the second and/or fourth layers. In addition to this, the results improve our understanding of the atomic structure of the Bi/InP(1 0 0)(2 × 4) surface and lead to refined surface models which include Bi-Bi and Bi-P dimers.  相似文献   

12.
A study of surface and interface properties of reconstructed Au-SiC(0 0 0 1) surfaces is reported. Two reconstructions were prepared on SiC(0 0 0 1), a √3 × √3R30° and a Si-rich 3 × 3, before Au deposition and subsequent annealing at different temperatures. For the Si-rich 3 × 3 surface the existence of three stable reconstructions 2√3 × 2√3R30°, 3 × 3 and 5 × 5 are revealed after deposition of Au layers, 4-8 Å thick, and annealing at progressively higher temperatures between 500 and 950 °C. For the 2√3 surface two surface shifted Si 2p components are revealed and the Au 4f spectra clearly indicate silicide formation. The variation in relative intensity for the different core level components with photon energy suggests formation of an ordered silicide layer with some excess Si on top. Similar core level spectra and variations in relative intensity with photon energy are obtained for the 3 × 3 and 5 × 5 phases but the amount of excess Si on top is observed to be smaller and an additional weak Si 2p component becomes discernable.For the √3 surface the evolution of the core level spectra after Au deposition and annealing is shown to be distinctly different than for the Si-rich 3 × 3 surface and only one stable reconstruction, a 3 × 3 phase, is observed at similar annealing temperatures.  相似文献   

13.
In this paper, the InGa-terminated InGaAs(1 0 0) (4 × 2)/c(8 × 2) surface was studied in detail, which turned out to be the most suitable to develop an InGaAs/GaAsSb interface that is as sharp as possible. In ultra high vacuum the InGaAs surface was investigated with low-energy electron diffraction, scanning tunneling microscopy and UV photoelectron spectroscopy employing synchrotron radiation as light source. Scanning the ΓΔX direction by varying the photon energy between 8.5 eV and 50 eV, two surface states in the photoelectron spectra were observed in addition to the valence band peaks.  相似文献   

14.
SiH4 and GeH4 dissociative adsorptions on a buckled SiGe(1 0 0)-2 × 1 surface have been analyzed using density functional theory (DFT) at the B3LYP level. The Ge alloying in the Si(1 0 0)-2 × 1 surface affects the dimer buckling and its surface reactivity. Systematic Ge influences on the reaction energetics are found in SiH4 and GeH4 reactions with four dimers of Si-Si, Ge-Si, Ge-Ge, and Si-Ge (∗ denotes the protruded atom). On a half H-covered surface, the energy barriers for silane and germane adsorption are higher than those on the pristine surface. The energy barrier for silane adsorption is higher than the corresponding barrier for germane adsorption. Rate constants are also calculated using the transition-state theory. We conclude that the SiGe surface reactivity in adsorption reaction depends on the Ge presence in dimer form. If the surface Ge is present in form of Ge-Ge, the surface reactivity decreases as the Ge-Ge content increases. If the surface Ge prefers to be in form of Ge-Si at low Ge contents, the surface reactivity increases first, then decreases at high Ge surface contents when Ge-Ge prevails. The calculated rate constant ratio of GeH4 adsorption on Si-Si over Ge-Ge at 650 °C is 2.1, which agrees with the experimental ratio of GeH4 adsorption probability on Si(1 0 0) over Si(1 0 0) covered by one monolayer Ge. The experimental ratio is 1.7 measured through supersonic molecular beam techniques. This consistency between calculation and experimental results supports that one monolayer of Ge on Si(1 0 0) exists in form of Ge-Ge dimer.  相似文献   

15.
The interaction between the (1 0 0) surface of SnTe single crystal and molecular oxygen was studied by means of X-ray photoelectron spectroscopy (XPS). Analysis of the obtained spectra shows that the mechanism of surface oxidation does not change in the range of oxygen exposure 108-1013 L. During the oxidation an additional component shifted 1.1 eV towards higher binding energies appears in the Sn 3d spectra. The Te 3d5/2 spectra fitting reveals two additional components with binding energies close to Te0 and Te+4. The dependence of the additional components fraction in both Sn 3d and Te 3d5/2 spectra on the oxygen exposure is semi-logarithmic. On the base of the experimental data two possible mechanisms are proposed.  相似文献   

16.
The Au/Ti(0 0 0 1) adsorption system was studied by low energy electron diffraction (LEED) and photoemission spectroscopy with synchrotron radiation after step-wise Au evaporation onto the Ti(0 0 0 1) surface. For adsorption of Au at 300 K, no additional superstructures were observed and the (1 × 1) pattern of the clean surface simply became diffuse. Annealing of gold layers more than 1 ML thick resulted in the formation of an ordered Au-Ti surface alloy. Depending on the temperature and annealing time, three surface reconstructions were observed by LEED: (√3 × √3) R30°, (2 × 2) and a one-dimensional incommensurate (√3 × √3) rectangular pattern. The Au 4f core level and valence band photoemission spectra provided evidence of a strong chemical interaction between gold and titanium. The data indicated formation of an intermetallic interface and associated valence orbital hybridization, together with diffusion of gold into the bulk. Au core-level shifts were found to be dependent on the surface alloy stoichiometry.  相似文献   

17.
III-V semiconductor compound structures are widely applied in technology of advanced microelectronics, optoelectronics, and gas sensors. In this paper, we report on the use of XPS to characterize in situ the interaction of thermally activated hydrogen atoms and hydrogen molecules with InP(1 0 0) surfaces covered by thin InN overlayers. XPS spectra were taken with an ESCALAB-210 spectrometer after repeated hydrogenation cycles at temperatures up to 350 °C. The evolution of the In 3d, In 4d, P 2p, N 1s, O 1s and C 1s photoelectron spectra was carefully monitored. The XPS spectra of the hydrogen exposed surface revealed significant differences compared to those from the non-hydrogenated surface. InN films were found to be weakly reactive to hydrogen under experimental conditions explored. The behavior of P atoms at the hydrogenated surface was dependent on the parameters characterizing each hydrogenation (exposure, hydrogen species used, annealing temperature). Moreover, the heavily hydrogenated surface exhibited a phosphorus enrichment.  相似文献   

18.
The (2 × 4)-reconstructed InP(1 0 0) surfaces have been investigated by scanning tunneling microscopy (STM) and synchrotron-radiation core-level photoelectron spectroscopy. STM observations show that the α2 model describes the atomic structure of the InP(1 0 0)(2 × 4) surface in a limited range of the surface-preparation conditions, as predicted theoretically but not previously observed. STM results also support the accuracy of the previously found mixed-dimer structure for the InP(1 0 0)(2 × 4) surface under less P-rich conditions. A study of P 2p core-level photoelectron spectra, measured with different surface-sensitivity conditions, demonstrates that P 2p photoemission from the mixed-dimer InP(1 0 0)(2 × 4) surface consists of at least two surface-core-level-shift (SCLS) components which have kinetic energies approximately 0.4 eV higher and 0.3 eV lower than the bulk emission. On the basis of the surface-sensitivity difference between these SCLSs, they are related to the third-layer and top-layer P sites in the mixed-dimer structure, respectively.  相似文献   

19.
First-principles pseudo-potential calculations within density-functional theory framework are performed in order to study the structural and electronic properties of nickel adsorption and diffusion on a GaN(0 0 0 1)-2×2 surface. The adsorption energies and potential energy surfaces are investigated for a Ni adatom on the Ga-terminated (0 0 0 1) surface of GaN. This surface is also used to study the effect of the nickel surface coverage. The results show that the most stable positions of a Ni adatom on GaN(0 0 0 1) are at the H3 sites and T4 sites, for low and high Ni coverage respectively. In addition, confirming previous experimental results, we have found that the growth of Ni monolayers on the GaN(0 0 0 1) surface is possible.  相似文献   

20.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号