首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
This article describes a local error estimator for Glimm's scheme for hyperbolic systems of conservation laws and uses it to replace the usual random choice in Glimm's scheme by an optimal choice. As a by-product of the local error estimator, the procedure provides a global error estimator that is shown numerically to be a very accurate estimate of the error in L1 (R) for all times. Although there is partial mathematical evidence for the error estimator proposed, at this stage the error estimator must be considered ad- hoc. Nonetheless, the error estimator is simple to compute, relatively inexpensive, without adjustable parameters and at least as accurate as other existing error estimators. Numerical experiments in 1-D for Burgers' equation and for Euler's system are performed to measure the asymptotic accuracy of the resulting scheme and of the error estimator.  相似文献   

2.
In this paper we present two error estimators resp. indicators for the time integration in structural dynamics. Based on the equivalence between the standard Newmark scheme and a Galerkin formulation in time [1] for linear problems a global time integration error estimator based on duality [3] can also be derived for the Newmark scheme. This error estimator is compared to an error indicator based on a finite difference approach in time [2]. Finally an adaptive time stepping scheme using the global estimator and the local indicator is presented. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We derive a robust residual a posteriori error estimator for time-dependent convection-diffusion-reaction problem, stabilized by subgrid viscosity in space and discretized by Crank-Nicolson scheme in time. The estimator yields upper bounds on the error which are global in space and time and lower bounds that are global in space and local in time. Numerical experiments illustrate the theoretical performance of the error estimator.  相似文献   

4.
We propose and analyze an a posteriori error estimator for a partial differential equation (PDE)-constrained optimization problem involving a nondifferentiable cost functional, fractional diffusion, and control-constraints. We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly PDE and propose an equivalent optimal control problem with a local state equation. For such an equivalent problem, we design an a posteriori error estimator which can be defined as the sum of four contributions: two contributions related to the approximation of the state and adjoint equations and two contributions that account for the discretization of the control variable and its associated subgradient. The contributions related to the discretization of the state and adjoint equations rely on anisotropic error estimators in weighted Sobolev spaces. We prove that the proposed a posteriori error estimator is locally efficient and, under suitable assumptions, reliable. We design an adaptive scheme that yields, for the examples that we perform, optimal experimental rates of convergence.  相似文献   

5.
The use of dual/adjoint problems for approximating functionals of solutions of PDEs with great accuracy or to merely drive a goal-oriented adaptive refinement scheme has become well-accepted, and it continues to be an active area of research. The traditional approach involves dual residual weighting (DRW). In this work we present two new functional error estimators and give conditions under which we can expect them to be asymptotically exact. The first is of DRW type and is derived for meshes in which most triangles satisfy an -approximate parallelogram property. The second functional estimator involves dual error estimate weighting (DEW) using any superconvergent gradient recovery technique for the primal and dual solutions. Several experiments are done which demonstrate the asymptotic exactness of a DEW estimator which uses a gradient recovery scheme proposed by Bank and Xu, and the effectiveness of refinement done with respect to the corresponding local error indicators. Resubmitted to Numerische Mathematik, June 30, 2005, with changes suggested by referees.  相似文献   

6.

In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine mesh and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.

  相似文献   

7.
In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.  相似文献   

8.
S. Repin  S. Sauter  A. Smolianski 《PAMM》2003,2(1):513-514
The present work is devoted to the a posteriori error estimation for 2nd order elliptic problems with Dirichlet boundary conditions. Using the duality technique we derive a reliable and efficient a posteriori error estimator that measures the error in the energy norm. All the derivations are done on continuous level, and the estimator can be used in assessing the error of any approximate solution which belongs to the Sobolev space H1, independently of the discretization method chosen. In particular, we make no use of the Galerkin orthogonality, which enables us to implement the estimator for measuring the error of the fictitious domain/penalty finite element method. The estimator is easily computable, and the only constant present in the estimator is the one from Friedrichs' inequality; the constant depends solely on the domain geometry, and the estimator is quite non‐sensitive to the error in the constant evaluation. Finally, we show how accurately the estimator captures the local error distribution, thus, creating a base for a justified adaptivity of an approximation.  相似文献   

9.
The paper deals with three approaches to comparing the regression lines corresponding to two dependent groups when using a robust estimator. The focus is on the Theil–Sen estimator with some comments about alternative estimators that might be used. The first approach is to test the global hypothesis that the two groups have equal intercepts and slopes in a manner that allows a heteroscedastic error term. The second approach is to test the hypothesis of equal intercepts, ignoring the slopes, and testing the hypothesis of equal slopes, ignoring the intercepts. The third approach is to test the hypothesis that the regression lines differ at a specified design point. This last goal corresponds to the classic Johnson and Neyman method when dealing with independent groups and when using the ordinary least squares regression estimator. Based on extant studies, there are guesses about how to proceed in a manner that will provide reasonably accurate control over the Type I error probability: Use some type of percentile bootstrap method. (Methods that assume the regression estimator is asymptotically normal were not considered for reasons reviewed in the paper.) But there are no simulation results providing some sense of how well they perform when dealing with a relatively small sample size. Data from the Well Elderly II study are used to illustrate that the choice between the ordinary least squares estimator and the Theil–Sen estimator can make a practical difference.  相似文献   

10.
Summary. An adaptive finite element method for the calculation of transonic potential flows was developed. An error indicator based on first order finite differences of gradients is introduced as a local error estimator. It measures second order distributional derivatives. Estimates involving this error estimator, a residual and the error are given. The error estimator can be used as a criterion for mesh refinement. We also give some computational results. Received September 16, 1993 / Revised version received June 7, 1994  相似文献   

11.
Adaptive refinement techniques are developed in this paper for the meshless Galerkin boundary node method for hypersingular boundary integral equations. Two types of error estimators are derived. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two consecutive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the numerical solution itself and its projection. These error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization scheme is presented to accomodate the non-local property of hypersingular integral operators for the needed computable local error indicators. The convergence of the adaptive meshless techniques is verified theoretically. To confirm the theoretical results and to show the efficiency of the adaptive techniques, numerical examples in 2D and 3D with high singularities are provided.  相似文献   

12.
Summary We present an a posteriori error estimator for the non-conforming Crouzeix-Raviart discretization of the Stokes equations which is based on the local evaluation of residuals with respect to the strong form of the differential equation. The error estimator yields global upper and local lower bounds for the error of the finite element solution. It can easily be generalized to the stationary, incompressible Navier-Stokes equations and to other non-conforming finite element methods. Numerical examples show the efficiency of the proposed error estimator.  相似文献   

13.
This is a continuation of paper [1]. The difference between this paper and paper [1] is that the initial functions considered here are step functions and those considered in [1] are. Lipschitz continuous. Since there are centered rarefaction waves here, more delicate techniques are needed. It may be a necessary step in solving p-System with general initial functions by Glimm's scheme. Notice that this paper can not be deduced from [1].  相似文献   

14.
We construct a generalized solution of the Riemann problem for strictly hyperbolic systems of conservation laws with source terms, and we use this to show that Glimm's method can be used directly to establish the existence of solutions of the Cauchy problem. The source terms are taken to be of the form aG, and this enables us to extend the method introduced by Lax to construct general solutions of the Riemann problem. Our generalized solution of the Riemann problem is “weaker than weak” in the sense that it is weaker than a distributional solution. Thus, we prove that a weak solution of the Cauchy problem is the limit of a sequence of Glimm scheme approximate solutions that are based on “weaker than weak” solutions of the Riemann problem. By establishing the convergence of Glimm's method, it follows that all of the results on time asymptotics and uniqueness for Glimm's method (in the presence of a linearly degenerate field) now apply, unchanged, to inhomogeneous systems.  相似文献   

15.
Summary We consider nonparametric estimation of hazard functions and their derivatives under random censorship, based on kernel smoothing of the Nelson (1972) estimator. One critically important ingredient for smoothing methods is the choice of an appropriate bandwidth. Since local variance of these estimates depends on the point where the hazard function is estimated and the bandwidth determines the trade-off between local variance and local bias, data-based local bandwidth choice is proposed. A general principle for obtaining asymptotically efficient data-based local bandwiths, is obtained by means of weak convergence of a local bandwidth process to a Gaussian limit process. Several specific asymptotically efficient bandwidth estimators are discussed. We propose in particular an, asymptotically efficient method derived from direct pilot estimators of the hazard function and of the local mean squared error. This bandwidth choice method has practical advantages and is also of interest in the uncensored case as well as for density estimation.Research supported by UC Davis Faculty Research Grant and by Air Force grant AFOSR-89-0386Research supported by Air Force grant AFOSR-89-0386  相似文献   

16.
This paper deals with an adaptive technique to compute structural-acoustic vibration modes. It is based on an a posteriori error estimator for a finite element method free of spurious or circulation nonzero-frequency modes. The estimator is shown to be equivalent, up to higher order terms, to the approximate eigenfunction error, measured in a useful norm; moreover, the equivalence constants are independent of the corresponding eigenvalue, the physical parameters, and the mesh size. This a posteriori error estimator yields global upper and local lower bounds for the error and, thus, it may be used to design adaptive algorithms. We propose a local refinement strategy based on this estimator and present a numerical test to assess the efficiency of this technique.  相似文献   

17.
The HBT(10)9 method for ODEs is expanded into HBT(10)9DAE for solving nonstiff and moderately stiff systems of fully implicit differential algebraic equations (DAEs) of arbitrarily high fixed index. A scheme to generate first-order derivatives at off-step points is combined with Pryce scheme which generates high order derivatives at step points. The stepsize is controlled by a local error estimator. HBT(10)9DAE uses only the first four derivatives of y instead of the first 10 required by Taylor’s series method T10DAE of order 10. Dormand–Prince’s DP(8,7)13M for ODEs is extended to DP(8,7)DAE for DAEs. HBT(10)9DAE wins over DP(8,7)DAE on several test problems on the basis of CPU time as a function of relative error at the end of the interval of integration. An index-5 problem is equally well solved by HBT(10)9DAE and T10DAE. On this problem, the error in the solution by DP(8,7)DAE increases as time increases.  相似文献   

18.
A generalization of classical linear models is varying coefficient models, which offer a flexible approach to modeling nonlinearity between covariates. A method of local weighted composite quantile regression is suggested to estimate the coefficient functions. The local Bahadur representation of the local estimator is derived and the asymptotic normality of the resulting estimator is established. Comparing to the local least squares estimator, the asymptotic relative efficiency is examined for the local weighted composite quantile estimator. Both theoretical analysis and numerical simulations reveal that the local weighted composite quantile estimator can obtain more efficient than the local least squares estimator for various non-normal errors. In the normal error case, the local weighted composite quantile estimator is almost as efficient as the local least squares estimator. Monte Carlo results are consistent with our theoretical findings. An empirical application demonstrates the potential of the proposed method.  相似文献   

19.
We develop an a posteriori error estimator which focuses on the local H1 error on a region of interest. The estimator bounds a weighted Sobolev norm of the error and is efficient up to oscillation terms. The new idea is very simple and applies to a large class of problems. An adaptive method guided by this estimator is implemented and compared to other local estimators, showing an excellent performance. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1266–1282, 2017  相似文献   

20.
The paper deals with a singularly perturbed reaction diffusionmodel problem. The focus is on reliable a posteriori error estimatorsfor the H1 seminorm that can be applied to anisotropic finiteelement meshes. A residual error estimator and a local problemerror estimator are proposed and rigorously analysed. They arelocally equivalent, and both bound the error reliably. Threemodifications of these estimators are introduced and discussed. Much attention is given to the performance of the error estimatorin numerical experiments. This helps to identify those estimatorsthat are suitable for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号