首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Navjeet Kaur 《合成通讯》2013,43(23):2935-2964
The seven-membered heterocycles are widely present in biologically active compounds which provided a reason for the development of protocols for their synthesis. Photochemical reactions are used for organic synthesis, and this review article highlighted the syntheses of heterocycles. Photochemistry is particularly fascinating and afforded an exotic charm due to its unconventional nature. In this review, I have given a clear idea of applicability of photochemical irradiations for the synthesis of a number of seven and higher membered O-heterocycles.  相似文献   

2.
Navjeet Kaur 《合成通讯》2018,48(11):1259-1284
The chemists have been interested in light as an energy source to induce chemical reactions since the beginning of scientific chemistry. This review summarizes the chemistry of photochemical reactions with emphasis of their synthetic applications. The organic photochemical reactions avoid the polluting or toxic reagents and therefore offer perspectives for sustainable processes and green chemistry. In summary, this review article describes the synthesis of a number of five-membered N-heterocycles.  相似文献   

3.
Cationic N‐heterocycles are an important class of organic compounds largely present in natural and bioactive molecules. They are widely used as fluorescent dyes for biological studies, as well as in spectroscopic and microscopic methods. These compounds are key intermediates in many natural and pharmaceutical syntheses. They are also a potential candidate for organic light‐emitting diodes (OLEDs). Because of these useful applications, the development of new methods for the synthesis of cationic N‐heterocycles has received a lot of attention. In particular, many C?H activation methodologies that realize high step‐ and atom‐economies toward these compounds have been developed. In this review, recent advancements in the synthesis and applications of cationic N‐heterocycles through C?H activation reactions are summarized. The new C?H activation reactions described in this review are preferred over their classical analogs.  相似文献   

4.
Photochemical reaction is a chemical reaction initiated by the absorption of energy in the form of light resulting in different types of reaction. Chromones, bischromones and anthraquinones are the bichromophoric molecules which contain the carbonyl group and double bond in conjugation. Photochemical reactions of these compounds result in the formation of such molecules which are not obtained via conventional methods. This review article describes the photochemical transformations of chromones, bischromones and anthraquinone derivatives and here main emphasis has been laid upon the intramolecular photochemical H-abstraction reactions that provide many exotic heterocyclics as the final photoproducts.  相似文献   

5.
Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new, diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocyclisation of peptides and small proteins. These constructs benefit from increased stability, structural rigidity and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, an overview of both the established and emerging methods for photochemical peptide macrocyclisation is presented, highlighting both the limitations and opportunities for further innovation in the field.  相似文献   

6.
Nitrogen, oxygen, and sulfur containing heterocycles have a wide range of biological activities. Metal and nonmetal catalysts are used in organic reactions with high activity. New strategies have been developed for the preparation of heterocycles in the last decades. The metal and nonmetal catalyzed synthesis of heterocycles is becoming an important and highly rewarding protocol in organic synthesis. In this review article, the synthesis of seven and higher-membered S-heterocycles is presented with the application of metal and nonmetal catalysts for the period from 1968 to 2018.  相似文献   

7.
Navjeet Kaur 《合成通讯》2019,49(5):617-661
A wide variety of biological activities are possessed by nitrogen, oxygen, and sulfur containing heterocycles and many methods are explored for the preparation of these heterocyclic compounds. Metal catalysts are used in organic reactions with high activity. The synthesis of heterocycles with the help of metal catalysts became very important in organic synthesis. New protocols have been investigated for the synthesis of heterocycles in the last decades. In present review article I have concentrated on the synthesis of seven and higher-membered heterocylces in the presence of ruthenium catalyst.  相似文献   

8.

In recent decades, a large number of reports related to the synthesis of N-, O- and S-containing heterocycles have appeared owing to a wide variety of their biological activity. Traditional approaches require expensive or highly specialized equipment or would be of limited use to the synthetic organic chemist due to their highly inconvenient approaches. New strategies have been developed for the preparation of heterocycles in the last decades. Metal and non-metal catalysts are used in organic reactions with high activity. These synthetic strategies are becoming important and highly rewarding protocols in organic synthesis. In this review article, the synthesis of heterocycles is presented with the application of cobalt metal as a catalyst. It describes the formation of different sized heterocyclic rings containing different heteroatoms.

  相似文献   

9.
Some transformations are not possible with ground‐state reactions even in the presence of a catalyst; hence, they are performed under photochemical conditions. Electron transfer occurred even with the photochemical excitement of one molecule where redox reaction is not possible at the ground state. The side products were obtained from ground‐state reactions. For C─C bond formation during photochemical reactions, there was no requirement of any chemical activation of the substrates. Therefore, these reactions are presented here for the synthesis of three‐membered and four‐membered heterocycles in the context of sustainable processes.  相似文献   

10.
Photochemical reactions contribute in a significant way to the existing repertoire of carbon-carbon bond-forming reactions by allowing access to exceptional molecular structures that cannot be obtained by conventional means. In this Review, the most important photochemical transformations that have been employed in natural product synthesis are presented. Selected total syntheses are discussed as examples, with particular attention given to the photochemical key step and its stereoselectivity. The structural relationship between the photochemically generated molecule and the natural product is shown, and, where necessary, the consecutive reactions in the synthesis are illustrated and classified.  相似文献   

11.
Navjeet Kaur 《合成通讯》2018,48(17):2119-2149
Photochemical mediated synthesis in organic chemistry is a highly expanding area. This is a widely exploited area of research for the construction of new pharmaceutically significant heterocycles. Recently many reports appeared for the synthesis of heterocycles photochemically due to a wide range of biological activities associated with them. In this article, I have described the synthesis of a number of oxygen-bearing five-membered heterocycles.  相似文献   

12.
Over the past decades, asymmetric photochemical synthesis has garnered significant attention for its sustainability and unique ability to generate enantio-enriched molecules through distinct reaction pathways. Photochemical asymmetric three-component reactions have demonstrated significant potential for the rapid construction of chiral compounds with molecular diversity and complexity. However, noteworthy challenges persist, including the participation of high-energy intermediates such as radical species, difficulties in precise control of stereoselectivity, and the presence of competing background and side reactions. Recent breakthroughs have led to the development of sophisticated strategies in this field. This review explores the intricate mechanisms, synthetic applications, and limitations of these methods. We anticipate that it will contribute towards advancing asymmetric catalysis, photochemical synthesis, and green chemistry.  相似文献   

13.
Compounds containing oxygen, nitrogen, or sulfur atoms inside the rings are attracting much attention and interest due to their biological importance. In recent years, several methods for the synthesis of such molecules have been reported by using aldo‐X bifunctional building blocks (AXB3 s) as substrates; these are a wide class of organic molecules that contain at least two reactive sites, among them, one aldehyde, acetal, or semiacetal group was involved. Because of the multiple reactivities, AXB3 s are widely used in the one‐pot synthesis of biologically important heterocycles. This review summarizes the synthesis of important heterocycles by using AXB3 s as pivotal components in establishing multicomponent reactions, tandem reactions, and so forth. In many cases, the established reaction systems with AXB3 s were characterized by some green properties, such as easy access to the substrate, mild and environmentally benign conditions, and wide scope of the substrate.  相似文献   

14.
Photochemical electron transfer induced reactions have become an interesting tool in organic synthesis since transformations can be easily performed which are difficult or impossible with more conventional organic reactions. In this context, electron transfer sensitized reactions are frequently used since the sensitizer can be considered as a catalyst. Various intermediates such as radical ions with a variety of reaction possibilities are involved. Nevertheless, the reactions have been performed with high yields and high selectivities. Particular attention is paid to the stability of the sensitizer. Reaction steps regenerating the sensitizer from different intermediates are discussed. In photochemical electron donor and acceptor sensitized transformations, these steps are often part of the main reaction course. In other cases, co-sensitizers or mediators significantly enhance the efficiency of the transformations although the number of reactive intermediates is increased.  相似文献   

15.
Abstract

One of the highly emerging and an important aspect of organic chemistry is the metal and organo-complex promoted synthesis of the heterocycles. The methodologies used earlier for its synthesis were less approachable to the organic chemist due to their high cost, highly sophisticated instrumentation and problematic methods. For both stereoselective and regioselective synthesis of fused five-membered O-containing heterocycles, cyclic reactions that are metal and organo-complex promoted have been known to be very efficient. The present review article covers the different applications of metals and organo-complexes in the formation of fused five-membered oxygen containing fused heterocycles. The fascinating research that has been done in this area is enclosed in this review.  相似文献   

16.
Since the discovery of the radical mediated thiol‐ene and thiol‐yne reactions, these reactions have been employed in an intramolecular manner for the synthesis of sulfur‐containing heterocycles. Although closely related on a mechanistic basis, the thiol‐ene and thiol‐yne cyclization can differ greatly in regioselectivity and product distribution, with the thiol‐ene process being more predictable and thus attracting greater utilization. Herein, we review intramolecular thiyl‐radical addition reactions and the factors leading to the observed regioselectivity in examples in which both the 5‐exo and 6‐endo mode of cyclization are feasible. We highlight the applications of these important reactions for organic synthesis in the recent literature.  相似文献   

17.
The most significant task in synthetic organic chemistry is developing organic reactions from a green and sustainable perspective. In these ways, heterogeneous catalysts are essential in many organic reactions. Thus, this study focuses on the synthesis of N−N bond bearing organic frameworks, particularly aromatic azo compounds and indazoles, using a heterogeneous metal catalyst. Organic molecules containing nitrogen-nitrogen bonds are greatly sought after in the synthesis of dyes, photochemical switches, food additives, and bioactive chemicals due to industry and human requirements. Finally, this review provides an overview of synthetic routes for the formation of N−N bonds by using various heterogeneous metal catalytic systems.  相似文献   

18.
《Electroanalysis》2018,30(5):759-797
This article is an overview of extensive research efforts in many laboratories in the last two decades in the area of light‐switchable electrochemical systems and modified electrodes. Electrochemical reactions, including electrocatalytic and bioelectrocatalytic processes, have been reversibly activated and inhibited upon irradiation with light at different wavelengths. In order to realize these light activated or inhibited processes, the electrodes or/and reacting molecules were functionalized with photoisomerizable molecules including various derivatives of diarylethene, phenoxynaphthacenequinone, azobenzene and spiropyran/merocyanine. Photochemical reactions of these species resulted in change of their redox activity, conformation and electrical charge. All these changes affected electrode surfaces or (bio)molecules resulting in switching ON‐OFF corresponding (bio)electrochemical processes. Various systems based on different light‐controlled reactions are reviewed and discussed with specific examples and with many illustrating figures. Possible extensions of the research area and future applications are briefly overviewed in the conclusion section. The present comprehensive review is addressed to a broad scientific community, including newcomers to the area.  相似文献   

19.
A photochemical approach to polysubstituted heterocycles using UV-induced alkene isomerization is described. The method allows for the synthesis of disubstituted furans and pyrroles under mild and neutral conditions and also provides access to a class of trisubstituted furans pertinent to natural-product synthesis. The method has broad functional-group tolerance and many richly decorated heterocycles have been prepared incorporating functional groups that are unstable under Brønsted and Lewis acidic conditions.  相似文献   

20.
丁万见  方维海 《化学进展》2007,19(10):1449-1459
光化学反应是最基本也是最重要的物理化学过程之一,在诸多领域有着广泛的应用。由于计算方法的限制以及光化学反应过程的错综复杂性,光化学反应机理的从头算研究是极具挑战性的国际前沿课题之一。本文综述了近20年来羰基化合物光化学反应机理从头算研究的一些进展,总结了羰基化合物电子激发态的特性和光化学反应过程的规律性,为深入研究光化学反应提供一些有用的信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号