首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Ab initio calculations are performed for the calix[4]arene (1) and its derivatives (2 and 3), in this study. 1H and 13C NMR measured spectral data given in our previous work are used to elucidate the structures of the prepared calix[4]arenes (13). The molecular geometry and chemical shift are calculated by using ab initio calculations based on the Hartree-Fock (HF) and the density functional theory (DFT) in the ground state. The results obtained from both methods are in agreement with the experimental results. The results of molecular geometry and chemical shifts show that DFT approach is closer to the experimental data than HF method.  相似文献   

2.
Density functional theory with the combined Becke3-LYP exchange-correlation energy functional [DFT(B3-LYP) method] using the 6-31G(d, p) basis set is applied to predict molecular parameters (geometries, rotational constants, dipole moments) and vibrational IR spectra (harmonic wavenumbers, absolute intensities) of six tautomers of the isocytosine molecule. The results are compared with the corresponding data calculated at the conventional ab initio Hartree-Fock (HF) level using the same basis set and with available experimental data. Calculations show that (a) three amino tautomers are slightly nonplanar species with, evidently, a distorted amino group, (b) the DFT (B3-LYP)/6-31G(d, p) method predicts better molecular parameters, than do the HF calculations, and (c) the DFT(B3-LYP)-calculated vibrational IR spectra of isocytosine agree well with the available recorded IR spectra, and they show marked improvement over the IR spectra predicted at the HF/6-31G(d, p) level. Tautomeric stabilities of isocytosine are discussed on the basis of computed electronic energies by the DFT(B3-LYP) and ab initio approaches [including the MP2 and MP4(SDQ) calculations of electronic energies] and predicted zero-point vibrational energies by DFT(B3-LYP) and HF methods. This relative energies at 0 K of the tautomeric forms of isocytosine predicted by both conventional ab initio and DFT(B3-LYP) methods correlate well with the experimental data, showing the predominance of the aminohydroxy tautomer of isocytosine for an isolated molecule. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
The purpose of this work is to provide an in-depth interpretation of the optical and electronic properties of a series of phosphole derivatives, including 2,5-diphenylthiooxophosphole (2a), 2-phenyl-5-biphenylthiooxophosphole (3a), 2-phenyl-5-stilbenylthiooxophosphole (4a), 2,5-dithienylthiooxophosphole (2b), 2-thienyl-5-biphenylthiooxophosphole (3b), 2-thienyl-5-stilbenylthiooxophosphole (4b), and dibenzophosphole 1. These thiooxophospholes show great potential for application in OLEDs as efficient red emitters due to the tuning of the optical and electronic properties by the use of various substituents at the 2,5-positions of the phosphole ring. The geometric and electronic structures of the oligomers in the ground state were investigated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited states were optimized with ab initio CIS. To assign the absorption and emission peaks observed in the experiment, we computed the energies of the lowest singlet excited states with time-dependent DFT (TD-DFT). All DFT calculations were performed using the B3LYP functional and the 6-31G (d) basis set. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials, and electron affinities for the phosphole derivatives are significantly affected by varying the phosphole ring substituents at the 2,5-positions, which favor the hole and electron injection into OLEDs. The absorption and emission spectra exhibit red shifts to some extent [the absorption spectra: 339.63 (1)<358.65 (2a)<373.77 (3a)<443.89 nm (4a) and 403.03 (3b)<449.11 (2b)<460.19 nm (4b); the emission spectra: 418.42 (1)<513.62 (2a)<556.51 (3a)<642.59 nm (4a) and 568.31 (2b)<631.11 (3b)<647.35 nm (4b)] and the Stokes shifts are unexpectedly large ranging from 78 to 228 nm resulting from a more planar conformation of the excited state for the phosphole derivatives.  相似文献   

4.
Fourier transform infrared (FTIR) measurements, ab initio quantum chemical calculations at the restricted Hartree–Fock (RHF) level and density functional theory (DFT) calculations have been performed to study molecular interactions in pure diisopropylsulfoxide (DiPSO) and the binary mixtures DiPSO/CCl4 and DiPSO/water. The optimized molecular geometry, vibrational wavenumbers, dipole moments and several thermodynamic parameters of free DiPSO and DiPSO/water 1:1 complex in the ground state were calculated using the RHF and B3LYP methods with the 6-31G(d) basis set. A fitting procedure has been performed for both SO and CH stretching regions and a detailed spectral interpretation has been done based on the data obtained from ab initio calculations, infrared spectra and band deconvolution analysis.  相似文献   

5.
The localized molecular orbitals of some saturated hydrocarbons and their derivatives have been formed using ab initio method and M. P. [1–2] localization procedure. Two models, SLMO and ELMO , a set of parameters of LMO Fock matrix elements, and a technique called “Group Effect” are proposed. Based on these, we developed a procedure to simulate the ab initio calculations on large molecules. Some test calculations have been done. The results are compared with those of the ab initio method. In general, absolute errors of orbital energies are about 10?3 a.u., and the relative errors of total energies are about 10?4. For the original applications, we applied this procedure to some large systems of alkane and their derivatives as well as three Crown-ether compounds. Satisfactory results are obtained.  相似文献   

6.
We present a graph-theoretic approach to adaptively compute many-body approximations in an efficient manner to perform (a) accurate post-Hartree–Fock (HF) ab initio molecular dynamics (AIMD) at density functional theory (DFT) cost for medium- to large-sized molecular clusters, (b) hybrid DFT electronic structure calculations for condensed-phase simulations at the cost of pure density functionals, (c) reduced-cost on-the-fly basis extrapolation for gas-phase AIMD and condensed phase studies, and (d) accurate post-HF-level potential energy surfaces at DFT cost for quantum nuclear effects. The salient features of our approach are ONIOM-like in that (a) the full system (cluster or condensed phase) calculation is performed at a lower level of theory (pure DFT for condensed phase or hybrid DFT for molecular systems), and (b) this approximation is improved through a correction term that captures all many-body interactions up to any given order within a higher level of theory (hybrid DFT for condensed phase; CCSD or MP2 for cluster), combined through graph-theoretic methods. Specifically, a region of chemical interest is coarse-grained into a set of nodes and these nodes are then connected to form edges based on a given definition of local envelope (or threshold) of interactions. The nodes and edges together define a graph, which forms the basis for developing the many-body expansion. The methods are demonstrated through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments, (b) potential energy surface calculations on one-dimensional water chains such as those found in ion channels, and (c) conformational stabilization and lattice energy studies on homogeneous and heterogeneous surfaces of water with organic adsorbates using two-dimensional periodic boundary conditions.  相似文献   

7.
Molecular mechanics, ab initio (RHF) and density functional (DFT/B3LYP) methods are applied to investigate the conformational preferences of the methoxycarbonyl group of the (±)methyl 3-hydroxy-1-azabicyclo[2.2.2]octane-3-carboxylate. 1H and 13C chemical shifts are also calculated by the GIAO/DFT approach and compared with experimental values. Both theoretical and experimental data account for almost eclipsed conformations with different degrees of distortion from the ideal geometry. It is found that calculations at the B3LYP/6-311G(d,p) level are relatively more reliable to explain the behaviour of the alkoxycarbonyl moiety of 2-hydroxyesters derived from the (±)3-hydroxy-1-azabicyclo[2.2.2]octane-3-carboxylic acid.  相似文献   

8.
王振  张静 《结构化学》2011,30(10):1367-1374
Quantum-chemical calculations on some derivatives of [n]-prismanes expanded by ethynyl or ethenyl groups have been performed using density functional theory (DFT) method.Their geometric structures,electronic structures,vertical ionization potentials and vertical electron affinities have been obtained at the B3LYP/6-31G** level of theory.Meanwhile,the total strain energy has been investigated in detail and compared with [n]-prismane and other derivatives.The present paper has also computed the enthalpies of formation for different isomers so as to evaluate their thermal stabilities.  相似文献   

9.
By using density functional theory (DFT) and high-level ab initio theory, we have investigated the structure, interaction energy, electronic property, and IR spectra of the water trimer cation [(H2O) 3 + ]. Two structures of the water trimer cation [the H3O+ containing linear (3Lp) structure versus the ring (3OO) structure] are compared. For the complete basis set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)], the 3Lp structure is 11.9?kcal/mol more stable than the 3OO structure. This indicates that the ionization of water clusters produce the hydronium cation moiety (H3O+) and the hydroxyl radical. It is interesting to note that the calculation results of the water trimer cation vary seriously depending on the calculation level. At the level of M?ller?CPlesset second-order perturbation (MP2) theory, the stability of 3OO is underestimated due to the underestimated O??O hemibonding energy. This stability is also underestimated even for the CCSD(T) single point calculations on the MP2-optimized geometry. For the 3OO structure, the MP2 and CCSD(T) calculations give closed-ring structures with a hemi-bond between two O atoms, while the DFT calculations show open-ring structures due to the overestimated O??O hemibonding energy. Thus, in order to obtain reliable stabilities and frequencies of the water trimer cation, the CCSD(T) geometry optimizations and frequency calculations are necessary. In this regard, the DFT functionals need to be improved to take into account the proper O??O hemibonding energy.  相似文献   

10.
Structures, optical properties, and photophysics of ladder indolo[3,2-b]carbazoles substituted symmetrically by phenylene and thiophene rings have been investigated theoretically and experimentally. The ground state optimized structures were obtained using the density functional theory (DFT) as approximated by the B3LYP functional and employing the 6-31G* basis set. All derivatives were found nonplanar in their electronic ground states. The character and the energy of the singlet–singlet electronic transitions have been investigated by applying the time-dependent density functional theory (TDDFT) to the correspondingly optimized-ground-state geometries. The ab initio restricted configuration interaction (singles) method (RCIS/6-31G*) was adopted to obtain the first singlet excited-state structures (S1) of the molecule. TDDFT calculations performed on the S1 optimized geometries was used to obtain emission energies. UV–vis and fluorescence spectroscopies were analyzed in conjunction with theoretical calculations. The computed excitation and emission energies were found in reasonable agreement with the experimental absorption and fluorescence spectra. Finally, the photophysical behavior of the indolocarbazoles have been studied by means of steady state and time resolved fluorescence. The overall data have allowed the determination of the rate constants for the radiative and nonradiative decay processes. Both theoretical and experimental data show that the replacement of phenylene rings by thiophene units induces a red shift in the absorption and fluorescence spectra. This behavior is interpreted in terms of the electron donor properties of the thiophene ring. On the other hand, the change of the substitutional pattern, from 2,8 to 3,9, causes a significant hypsochromic shift of the absorption and fluorescence bands.  相似文献   

11.
[reaction: see text] Ab initio and density functional studies (DFT) on cycloaddition reactions of 1,3-diazabuta-1,3-dienes with ketenes are reported. The vinylic (C=C) and the carbonyl (C=O) units of the ketenes are found to participate in concerted asynchronous [4 + 2] cycloaddition reactions. The transition states (3t, 4t, and 7t) for these paths have been located on the PE surface at the correlated levels of ab initio calculations. A reasonable mechanism for the formation of [4 + 2] and [2 + 2] adducts is presented.  相似文献   

12.
This work describes the syntheses, crystal structures, photophysical properties, and electro‐chemical analyses of benzo[k]fluoranthene‐based linear acenes, together with ab initio density functional theory computations on them. The molecules were prepared in generally moderate to good yields through Pd‐catalyzed cycloadditions between 1,8‐diethynylnaphthalene derivatives and aryl iodides. This protocol is simpler and more efficient than conventional methods. The scope and limitations of this reaction were examined. The structures of compounds 4 hb , 15 ac , 17 ab , 19 ac , and 24 je were determined by X‐ray analysis; they are either bent or twisted, rather than planar. The photophysical and electrochemical properties of these cycloadducts were also investigated and compared with computational predictions based on density functional theory.  相似文献   

13.
[3]- and [5]-ladderanes obtained by way of template-controlled syntheses conducted in the organic solid state have been characterized via He I photoelectron (PE) spectroscopy. The results provide a first correlation with X-ray crystallographic structure data and establish the reliability of quantum chemical DFT (B3LYP/6-31G*) and ab initio HF calculations in predicting geometrical and electronic structures of molecular ladder frameworks.  相似文献   

14.
The vibrational spectra of benzofuran and some of its derivatives have been systematically investigated by ab initio and density functional B3LYP methods. The harmonic vibrational wavenumbers and intensity of vibrational bands were calculated at ab initio and DFT levels invoking different basis sets up to 6-311++g**. Vibrational assignments have been made and it has been found that the calculated DFT frequencies agree well in most cases with the observed frequencies for each molecule. Conformational studies have also been carried out and it is evident from ab initio calculations that 2(3H) benzofuranone is more stable than 3(2H) benzofuranone in support to our earlier semiempirical results.  相似文献   

15.
The electronic structure and magnetic properties of neptunyl(VI), NpO22+, and two neptunyl complexes, [NpO2(NO3)3]? and [NpO2Cl4]2?, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal‐field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin–orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g‐factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g‐factors were calculated for the ground and excited states. For [NpO2Cl4]2?, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn–Sham DFT with standard functionals can produce reasonable g‐factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward.  相似文献   

16.
Density functional theory (DFT) with the Becke's three-parameter exchange correlation functional and the functional of Lee, Yang and Parr, gradient-corrected functionals of Perdew, and Perdew and Wang [the DFT(B3LYP), DFT(B3P86) and DFT(B3PW91) methods, respectively], and several levels of conventional ab initio post-Hartree-Fock theory (second- and fourth-order perturbation theory M?ller-Plesset MP2 and MP4(SDTQ), coupled cluster with the single and double excitations (CCSD), and CCSD with perturbative triple excitation [CCSD(T)], configuration interaction with the single and double excitations [CISD], and quadratic configuration interaction method [QCISD(T)], using several basis sets [ranging from a simple 6-31G(d,p) basis set to a 6-311+ +G(3df, 2pd) one], were applied to study of the molecular structure (geometrical parameters, rotational constants, dipole moment) and harmonized infrared (IR) spectrum of formaldehyde (CH2O). High-level ab initio methods CCSD(T) and QCISD(T) with the 6-311+ +G(3df, 2pd) predict correctly molecular parameters, vibrational harmonic wavenumbers and the shifts of the harmonic IR spectrum of 12CH2 16O upon isotopic substitution. Received: 30 January 1997 / Accepted: 7 May 1997  相似文献   

17.
We have studied the structures and stabilities of Au6 and Au8 at the density-functional theory (DFT) and ab initio correlated levels of theory. For Au8, our ab initio calculations predict the lowest Au8 isomer to be planar, in line with the DFT calculations.  相似文献   

18.
《Polyhedron》2007,26(9-11):2313-2319
We present ab initio complete-active-space configuration interaction (CASCI) density functional theory (DFT) study of the phenalenyl radical systems. Our approach employed in this study is based on the assumption that one-electron per one phenalenyl unit is responsible for magnetic properties of the phenalenyl radical dimeric compounds and that the residual correlation effects can be covered by DFT correlation potential for CASCI[2,2] wavefunction. The effective exchange integrals and lowest-lying excited energies of several phenalenyl dimeric compounds are calculated by CASCI[2,2]-DFT method. The implication of the computational results are discussed in relation with those of spin unrestricted Hartree–Fock (UHF), hybrid DFT, and pure DFT, and the experimental ones.  相似文献   

19.
The rotational isomerism of calix[4]arene, 25,27-dihydroxy-26,28-dimethoxycalix[4]arene, and 25,26,27,28-tetramethoxycalix[4]arene in different environments has been examined using sophisticated ab initio and DFT calculations. Free energies in the gas phase, in chloroform, and in toluene have been calculated not only for the minimum energy conformations cone and paco, which differ in the orientation of one phenol/anisole ring with respect to the other three, but also for the transition state that connects these two minima. Results provide a complete understanding of the changes induced by the partial or total OH --> OCH3 replacement in the calix[4]arene scaffold.  相似文献   

20.
[reaction: see text] Computational studies of three different reaction types involving hydrocarbons (homolytic C-C bond breaking of alkanes, progressive insertions of triplet methylene into C-H bonds of ethane, and [2+2] cyclizations of methyl-substituted alkenes to form polymethylcyclobutanes) show that the B3LYP model consistently underestimates the reaction energy, even when extremely large basis sets are employed. The error is systematic and cumulative, such that the reaction energies of reactions involving hydrocarbons with more than 4-6 C-C bonds are predicted quite poorly. Energies are underestimated for slightly and highly methyl-substituted cyclic and acyclic hydrocarbons, so the errors do not arise from structural issues such as steric repulsion or ring strain energy. We trace the error associated with the B3LYP approach to its consistent underestimation of the C-C bond energy. Other DFT models show this problem to lesser extents, while the MP2 method avoids it. As a consequence, we discourage the use of the B3LYP model for reaction energy calculations for organic compounds containing more than four carbon atoms. We advocate use of a collection of pure and hybrid DFT models (and ab initio models where possible) to provide computational "error bars".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号