首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new complexes, trans-[MnL2(NCS)2] (1) and trans-[CoL2(H2O)(EtOH)](ClO4)2?·?H2O (2) with asymmetrical triaryltriazole ligands [L?=?3-(p-chlorophenyl)-4-(p-methylphenyl)-5-(2-pyridyl)-1,2,4-triazole], have been synthesized and characterized by elemental analysis, FT-IR, ESI-MS, and single-crystal X-ray diffraction. In the complexes each L adopts a chelating bidentate mode via the nitrogen of pyridyl and triazole. Both complexes have a similar distorted octahedral core with two NCS? ions in the trans position in 1, while one H2O and one EtOH are present in the axial sites in 2.  相似文献   

2.
《合成通讯》2013,43(18):3233-3241
Abstract

A concise synthesis of (2E,4Z)-2,4-heptadien-1-ol and (2E,4Z)-2,4-heptadienal is presented. Commercially available (Z)-2-penten-1-ol was converted to ethyl-(2E,4Z)-2,4-heptadienoate by reaction with activated MnO2 and (carboethoxymethylene)triphenylphosphorane in the presence of benzoic acid as a catalyst. Ethyl-(2E,4Z)-2,4-heptadienoate was converted to (2E,4Z)-2,4-heptadien-1-ol with LiAlH4. The alcohol was partially oxidized to (2E,4Z)-2,4-heptadienal with MnO2. The title compounds are male-specific, antennally active volatile compounds from the Saltcedar leaf beetle, Diorhabda elongata Brulle (Coleoptera: Chrysomelidae) and have potential use in the biological control of the invasive weed saltcedar (Tamarix spp).  相似文献   

3.
Reaction of the N-(2-pyridyl)carbonylaniline ligand (L) with Cu(NO3)2, Cu(ClO4)2, Zn(ClO4)2, Ni(NO3)2 and PdCl2 gives complexes with stoichiometry [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, [Zn(L)2(H2O)2] (ClO4)2, [Ni(L)2(H2O)Cl](NO3) and PdLCl2. The new complexes were characterized by elemental analyses and infrared spectra. The crystal structures of [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, and [Zn(L)2(H2O)2](ClO4)2 were determined by X-ray crystallography. The cation complexes [M(L)2(H2O)2] contain copper(II) and zinc(II) with distorted octahedral geometry with two N-(2-pyridyl)carbonylaniline (L) ligands occupying the equatorial sites. The hexa-coordinated metal atoms are bonded to two pyridinic nitrogens, two carbonyl oxygens and two water molecules occupying the axial sites. Both the coordinated water molecules and uncoordinated amide NH groups of the N-(2-pyridyl)carbonylaniline (L) ligands are involved in hydrogen bonding, resulting in infinite hydrogen-bonded chains running in one and two-dimensions.  相似文献   

4.
2,2,2-Tris(diphenylphosphinomethyl)ethane (triphos) coordinates to Co(BF4)2 · 6H2O giving red-violet intermediate [Co(triphos)(S)2](BF4)2 (S = solvent) in THF/EtOH. The addition of an equimolar amount of chiral amino alcohol (L-alaninol, S-2-phenylglycinol, R-1-amino-2-propanol and (±)-2-amino-1-phenyl-ethanol) and Na(OH) into this solution affords the green [Co(triphos)(chiral amino alcoholato)](BF4) complexes. The addition of equimolar Na(BPh4) precipitates the deep green [Co(triphos)(L-alaninolato)](BPh4) (1), [Co(triphos)(S-2-phenylglycinolato)](BPh4) (2), [Co(triphos)(R-1-amino-2-propanolato)](BPh4) (3), and [Co(triphos)((±)-2-amino-1-phenyl-ethanolato)](BPh4) (4) complexes, respectively. The complexes are isolated in good yields and characterized by elemental analysis, IR-, UV-Vis-, 1H-/31P-NMR- and mass-spectroscopy. 1H-/31P-NMR results show the paramagnetic nature of the complexes and magnetic moment values are μexptl(µB) = 3.65 (1), 3.78 (2), 3.82 (3), and 3.71µB (4) in methanol at 25 °C.  相似文献   

5.
The structures of [Cu (S2CN (CH2)4)2] (1) and [Zn2(S2CN‐(CH2)4)4] (2) have been determined by X‐ray crystallography analysis. They are all isomorphous and triclinic, space group of P1?, with Z = 1. The lattice parameters of compound 1 is: a = 0.63483(2) nm, b = 0.74972(3) nm, c=0.78390(1) mn, α = 75.912(2)°, β = 78.634(2)° and γ = 86.845(2)°; compound 2: a = 0.78707(6) nm, b=0.79823(6) nm, c = 1.23246(9) nm, α = 74.813(2)°, β = 73.048(2)° and γ = 88.036(2)°. The copper atom is located on a crystallographic inversion center and zinc atom lies across centers of symmetry. The Cu(II) ion has a square‐planar geometry while Zn(II) has a distorted tetrahedral geometry. The thermal gravity (TG) data indicate that no structural transitions in the two compounds were abserved and the decomposition products can adsorb gas. Also they all have a high thermal stability.  相似文献   

6.
Coordination reactions of N-(2-thienylmethylidene)aniline derivatives, L, with PdCl2 or [PdCl4]2? in ethanol yield stable complexes of the type trans-(L)2PdCl2 with the azomethine nitrogen atoms as σ donors. These are not readily convertible to othor-palladated complexes. An X-ray crystallographic study of the complex (L2)2PdCl2 reveals a centrosymmetric geometry. The structure is in the triclinic space group $ {\rm P}\bar 1 $ with a = 8.633(2) Å, b = 12.759(3) Å, c = 8.398(2) Å, α = 96.65(5)°, β = 111.47(5)*, γ= 101.28(6)°, and Z = 1. The final R factor is 0.043 (Rw = 0.044) for 2396 observed reflections. There is no real bonding between a thiophene sulfur atom and a central palladium ion. However, a long distance interaction between S and Pd does exist.  相似文献   

7.
The mononuclear palladium(II) complex trans-[PdCl2(PhPPy2)2] (1) reacts with [Cu(CH3CN)4]ClO4 to afford the heterobinuclear [(PhPPy2)2PdCuCl2]ClO4·2CH3CN (2), bridged by two PhPPy2 ligands in a new mode. Complex 2 crystallizes in space group P21/c with a?=?12.947(1), b?=?9.142(1), c?=?33.454(2)?Å, β?=?99.698(1)°. The copper(I) and palladium(II) ions in 2 adopt distorted tetrahedral and square-planar geometry, respectively. At room temperature, the complex is photoluminescent in solution.  相似文献   

8.
Six novel μ-oxamido binuclear complexes, namely Cu(axpn)Ln(L)2(ClO4)3 (Ln: Eu, Gd, Tb, Nd, Ho, Er), where oxpn is N,N'-bis(3-aminopropyl) oxamido, L denotes 5-nitro,10-phenanthroline (abbreviated as NO2-phen), have been synthesized and characterised. The magnetic susceptibility of complexes Cu(oxpn)Gd(NO2-phen)2(ClO4)3.2H2O was measured over the 4–300 K and the observed data were successfully simulated by equation based on spin Hamiltonian operator (H = -2J1 · S2), giving the exchange integral J(Cu-Gd)=-1.62 cm?1. This indicates a weak antiferromagnetic interaction between the Cu(II) and Gd(III) ions.  相似文献   

9.

A series of novel trans-mixed diamine platinum(II) and platinum(IV) complexes of type trans-[PtII(R-NH2)(R'-NH2)Cl2] and trans -[PtIV(R-NH2)(R'-NH2)Cl4] (where R-NH2 = ethylamine or butylamine and R'-NH2 = methylamine, propylamine, isopropylamine, pentylamine, or hexylamine) was synthesized and characterized using elemental analysis and infrared and 195Pt nuclear magnetic resonance spectroscopic techniques.  相似文献   

10.
11.
Oxidative addition of diphenyl disulfide to the coordinatively unsaturated [Mn(CO)5]? led to the formation of low-spin, six-coordinate cis-[Mn(CO)4(SPh)2]?. The complex cis-[PPN][Mn(CO)4(SPh)2] crystallized in monoclinic space group P21/c with a = 9.965(2) Å, b = 24.604(5) Å, c = 19.291(4) Å, β = 100.05(2)°, V = 4657(2)Å3, and Z = 4; final R = 0.036 and Rw = 0.039. Thermal transformation of cis-[Mn(CO)4(SPh)2]? to [(CO)3Mn(μ-SPh)3Mn(CO)3]? was completed overnight in THF at room temperature. Additionally, reaction of [Mn(CO)5]? and PhSH in 1:2 mole ratio also led to cis-[PPN](Mn(CO)4(SPh)2]. Presumably, oxidative addition of PhSH to [Mn(CO)4]? was followed by a Lewis acid-base reaction to form cis-[Mn(CO)4(SPh)2]? with evolution of H2.  相似文献   

12.
The ligand 1,1,3,3-tetramethylbutylisocyanide, CNCMe2CH2CMe3, i.e. t-octylisocyanide, with Co(ClO4)2 · 6H2O or Co(BF4)2 · 6H2O in ethanol, produces pentakis(alkylisocyanide)cobalt(II) complexes, [Co(CNC8H17-t)5](ClO4)2 (1) and [Co(CNC8H17-t)5](BF4)2 · 2.0H2O (2). These Co(II) complexes undergo reduction/substitution upon reaction with trialkylphosphine ligands to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2]ClO4 (3), [Co(CNC8H17-t)3{P(C4H9-n)3}2]BF4 (4), and [Co(CNC8H17-t)3{P(C3H7-n)3}2]ClO4 (5). Complex 3 is oxidized with AgClO4 to produce [Co(CNC8H17-t)3{P(C4H9-n)3}2](ClO4)2 (6). Complex 1 yields [Co(CNC8H17-t)4py2](ClO4)2 (7) upon dissolving in pyridine. Reactions with triarylphosphine and triphenylarsine ligands were unsatisfactory. The chemistry of 1 and 2 is therefore more similar to that of Co(II) complexes with CNCMe3 than with CNCHMe2, other alkylisocyanides, or arylisocyanides, but shows some behavior dissimilar to any known Co(II) complexes of alkylisocyanides or arylisocyanides. Infrared and electronic spectra, magnetic susceptibility, molar conductivities, and cyclic voltammetry are reported and compared with known complexes. 1H, 13C, and 31P NMR data were also measured for the diamagnetic complexes 3, 4, and 5.  相似文献   

13.
It was first found that (diisopropylamido)bis(methylcyclopentadienyl)lanthanides (MeC5H4)2LnN(i-Pr)2(THF) (Ln = Yb ( 1 ), Er ( 2 ), Y ( 3 )) exhibit extremely high catalytic activity in the polymerization of methyl methacrylate. The reactions can be carried out over a quite broad range of polymerization temperatures from -78 to 40°C. The catalytic activity of the complexes increases with an increase of ionic radii of the metal elements, i.e. Y > Er > Yb. The results of GPC (gel permeation chromatography) indicate that the number-average molecular weights (Mn) of polymers obtained exceed 100 × 103 and the molecular weight distribution (Mw/Mn) becomes broad with the increase of temperature. Furthermore highly syndiotactic PMMA (87.7%) can be obtained by lowering the reaction temperature to −78°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1593–1597, 1998  相似文献   

14.
Reactions of AgO2C2F3 with (E)-N-(pyridylmethylene)aniline in which the pyridyl N is in the p- or m-position yielded two 1-D coordination polymers, [(AgO2C2F3)2(La)2]n (La = (E)-2,6-diisopropyl-N-(pyrid-3-ylmethylene)aniline) (1) and [(AgOC2F3)2(Ld)2]n (Ld = (E)-2,6-diisopropyl-N-(pyrid-4-ylmethylene)aniline) (5), and three discrete complexes, [(AgO2C2F3)2(La)4] (2), [AgO2C2F3(Lb)2] (Lb = (E)-N-(pyrid-4-ylmethylene)aniline) (3) and [(AgOC2F3)2(Lc)4] (Lc = (E)-2,6-dimethyl-N-(pyrid-4-ylmethylene)aniline) (4). The structures were determined by MS, FT-IR and NMR spectroscopies, elemental analysis and single crystal XRD. 1 is an organometallic coordination polymer with silver in η1-arene coordination, but is a discrete dimeric complex 2 when crystallized from warm diethylether. The geometries around silver(I) in 1 and 4 are tetrahedral, ‘inverted seesaw’ in 2 and T-shaped in 3 and in all the anion seems to play a role. Ag(I) centers in 5 have distorted trigonal bipyramid and inverted seesaw geometries. The trifluoroacetate anions in these complexes display variable monodentate and short bridging coordination patterns. All complexes absorb and strongly emit UV-Vis radiation at room temperature.  相似文献   

15.
Coordination polymers, {[Cd(2-mBIM)3](ClO4)2} n (1) and [Cd(BIM)2(NO3)2] n (2), have been prepared from the reaction of bis(2-methylimidazol-1-yl)methane(2-mBIM) with Cd(ClO4)2 and bis(imidazol-1-yl)methane (BIM) with Cd(NO3)2 in ethanol and water, respectively. Their structures were characterized by single crystal X-ray diffraction and IR spectroscopy. Compound 1 crystallizes in the rhombohedral space group R-3c with a = b = 12.3617(5) Å, c = 38.896(3) Å, γ = 120°, V = 5147.5(5) Å3, z = 6. The CdII occupies a crystallographic inversion center and is coordinated by six N atoms from six distinct 2-mBIM ligands to form a slightly distorted octahedral geometry. Each 2-mBIM is coordinated to two CdII cations, linking alternatively four CdII cations, resulting in a 32-membered M4L4 macrometallacycle. Compound 2 crystallizes in the monoclinic space group C2/m with a = 14.400(3) Å, b = 9.3894(18) Å, c = 8.6926(17) Å, β = 123.499(2)°, V = 980.1(3) Å3, z = 2. The Cd coordinates to four nitrogen atoms from four different BIM and two nitrates to form a slightly distorted octahedral geometry. The BIM ligands bridge to form a 1-D infinite double-bridged chain structure with 16-membered M2L2 macrometallacyclic structural units.  相似文献   

16.
Six novel μ-oxamido heterobinuclear complexes, namely Cu(oxae)Ln(Me2bpy)2-(ClO4)3 (Ln? La, Nd, Gd, Tb, Ho, Er), where oxae denotes N, N'-bis(2-aminoethyl)oxamido dianion, Me2bpy is 4,4'-dimethyl-2,2'-bipyridyl, have been synthesized and characterised by elemental analyses, IR, conductivity measurements and electronic spectra. The temperature dependence of the magnetic susceptibility of Cu(oxae)Gd(Me2bpy)2(ClO4)3 has been measured over the range 4–300 K. The least-squares fit of the experimental susceptibilities yielded J = 1.87 cm?1. The observed Gd(III)-Cu(II) coupling is ferromagnetic. One plausible mechanism that can cause a ferromagnetic coupling between Gd(III) and Cu(II) is discussed in terms of spin-polarization.  相似文献   

17.
Two new complexes, [Co(L)2]Cl·(MeOH)2 (1) and [Ni(L)2]4·EtOH (2) (L?=?(E)-2-(amino((pyridin-2-ylmethylene)amino)methylene)maleonitrile), were synthesized and characterized by X-ray crystallography, IR, UV, and fluorescence spectroscopy. According to X-ray crystallographic studies, each metal was six-coordinate with six nitrogens from two ligands. Both complexes form two-dimensional supramolecular networks via hydrogen bonding and π–π interactions. Ultraviolet and visible spectra showed that absorptions arise from π–π ?, MLCT, and dd electron transitions. Fluorescence spectroscopy revealed moderate intercalative binding of these two complexes with EB–DNA, with apparent binding constant (K app) values of 9.14?×?105 and 3.20?×?105?M?1 for Co(III) and Ni(II) complexes, respectively. UV–visible absorption spectra showed that the absorption of DNA at 260?nm was quenched for 2 but quenched then improved for 1 with addition of complexes, tentatively attributed to the effect of the combined intercalative binding and electrostatic interaction for 1.  相似文献   

18.
Four new heterotrinuclear complexes have been synthesized and characterized, namely {[Ni(L)2]2[Cu(opba)]}(ClO4)2, where opba denotes o-phenylenebis(oxamato) and L stands for 1,10-phenanthroline(phen) (1), 5-nitro-l,10-phenanthroline(NO2-phen) (2), 2,2′-bipyridyl(bpy) (S) and 4,4′-dimethyl-2,2′-bipyridyl(Me2bpy) (4). The temperature dependence of the magnetic susceptibility of {[Ni(phen)2]2[Cu(opba)]}(ClO4)23H2O has been studied in the 4–300 K range, giving the exchange integral J—109 cm?1. The HMT vs. T plot exhibits a minimum at about 100 K, characteristic of this kind of coupled polymetallic complex with an irregular spin-state structure.  相似文献   

19.
The compounds of 2-(5-chloro/nitro-1H-benzimidazol-2-yl)-4-bromo/nitrophenols (HLX : X = 1–4) and their copper(II) nitrate and iron(III) nitrate complexes have been synthesized and characterized. The structures of the complexes were confirmed on the basis of elemental analysis, thermal gravimetric analysis, molar conductivity and magnetic moment measurements, FT-IR, mass, and UV-Vis spectroscopy techniques. The complexes show high-thermal stability with >350°C m.p. In all complexes, the ligands are bidentate via one imine nitrogen and a phenolate oxygen. Cu(II) complexes having 1 : 2 M : L ratio are classified as non-electrolytes, whereas 1 : 1 M : L ratio is observed in Fe(III) complexes except [Fe(L3)2(H2O)2](NO3) ? 3H2O. The antimicrobial activities of the ligands and the complexes were evaluated using the disc diffusion method in DMSO as well as minimum inhibitory concentration dilution method against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis. Antifungal activities were reported for Candida albicans. The complexes [Fe(L3)2(H2O)2](NO3) ? 3H2O and [Cu(L3)2] ? 2H2O are more effective against S. epidermidis than ciprofloxacin.  相似文献   

20.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号