首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following compounds were isolated and more closely studied by means of thermal analysis, X-ray scattering and IR absorption spectra and determination of solubilities: Pr2(H2 T)3 · 6 H2O, Nd2(H2 T)3 · 6 H2O, Sm2(H2 T)3 · 5 H2O, Gd2(H2 T)3 · 5 H2O, Tb2(H2 T)3 · 5 H2O, Dy2(H2 T)3 · 5 H2O, Ho2(H2 T)3 · 5 H2O, Er2(H2 T)3 · 5 H2O, PrH5 T 2 · 2 H2O, NdH5 T 2 · 2 H2O, SmH5 T 2 · 2 H2O, GdH5 T 2 · 3 H2O, TbH5 T 2 · 3 H2O, DyH5 T 2 · 3 H2O, HoH5 T 2 · 3 H2O, ErH5 T 2 · 3 H2O.  相似文献   

2.
Crystal Structure of Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O The crystall structures of the isostructural halates Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O were determined using X-ray single crystal data (monoclinic space group C2/c? C, Z = 4), The mean bond lengths and bond angles of the halate ions in the Ba(ClO3)2 · 1 H2O-type compounds, which correspond to those of other halates, are Cl? O, 149.0, Br? O, 165.9, I? O, 180.2 pm, ClO3?, 106.4, BrO3?, 104.0, and IO3?, 99.6°. The structure data obtained are discussed in terms of possible orientational disorder of the water molecules, strengths of the hydrogen bonds, influence of the lead ions on the structure, and site group distortion of the halate ions.  相似文献   

3.
On the Coordination of Al in the Calcium Aluminate Hydrates 2 CaO · Al2O3 · 8 H2O and CaO · Al2O3 · 10 H2O By investigations with high-resolution 27Al-NMR in solids it is shown that in the compound 2 CaO · Al2O3 · 8 H2O the Al merely exist in octahedral coordination. According to this and considering its structural relationship with 4 CaO · Al2O3 · 19 H2O the dicalcium aluminate hydrate is proposed to be formulated as [Ca2Al(OH)6][Al(OH)3 (H2O)3]OH. Likewise for the compound CaO · Al2O3 · 10 H2O the octahedral coordination of the Al is proved by 27Al-NMR. This result corresponds with literature according to which a constitution as cyclohexaaluminate Ca3[Al6(OH)24] · 18 H2O is proposed.  相似文献   

4.
Rate constants for the reactions of atomic oxygen (O3P) with C2H3F, C2H3Cl, C2H3Br, 1,1-C2H2F2, and 1,2-C2H2F2 have been measured at 307°K using a discharge-flow system coupled to a mass spectrometer. The rate constants for these reactions are (in units of 1011 cm3 mole?1 s?1) 2.63 ± 0.38, 5.22 ± 0.24, 4.90 ± 0.34, 2.19 ± 0.18, and 2.70 ± 0.34, respectively. For some of these reactions, the product carbonyl halides were identified.  相似文献   

5.
The solubility of the system CdO-SeO2-H2O was studied at 25 and 100°C. The fields of crystallization of α-CdSeO3, 3CdSeO3·H2SeO3 and CdSeO3·SeO2 were established at 25°C. At 100°C crystallize α-CdSeO3, 3CdSeO3·SeO2, 2CdSeO3·SeO2 and CdSeO3·SeO2. The compounds obtained were identified by means of chemical, X-ray and crystal-optical analysis. The mechanism of thermal dissociation of α-CdSeO3, 3CdSeO3·H2SeO3 and CdSeO3·SeO2 was studied. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Na2B2Se7, K2B2S7, and K2B2Se7: Three Perchalcogenoborates with a Novel Polymeric Anion Network Na2B2Se7 (I 2/a; a = 11.863(4) Å, b = 6.703(2) Å, c = 13.811(6) Å, β = 109.41(2)°; Z = 4), K2B2S7 (I 2/a; a = 11.660(2) Å, β = 6.827(1) Å, c = 12.992(3) Å, β = 106.78(3)°; Z = 4), and K2B2Se7 (I 2/a; a = 12.092(4) Å, b = 7.054(2) Å, c = 13.991(5) Å, β = 107.79(3)°; Z = 4) were prepared by reaction of stoichiometric amounts of sodium selenide (potassium sulfide) with boron and sulfur or of potassium selenide and boron diselenide, respectively, at 600°C with subsequent annealing. The crystal structures consist of polymeric anion chains of composition ([B2S7]2?)n or ([B2Se7]2?)n formed by spirocyclically connected five-membered B2S3 (B2Se3) rings and six-membered B2S4 (B2Se4) rings. The nine-coordinate alkaline metal cations are situated in between.  相似文献   

7.
The new compounds K2Au2Ge2S6 ( 1 ), K2Au2Sn2Se6 ( 2 ), and Cs2Au2SnS4 ( 3 ) have been synthesized through direct reaction of the elements with a molten polyalkalithiogermanate(stannate) flux at 650, 550, and 400 °C, respectively. Their crystal structures have been determined by single crystal X-ray diffraction techniques. 1 crystallizes in the monoclinic space group P21/n with a = 10.633(2) Å, b = 11.127(2) Å, c = 11.303(2) Å, β = 115,37(3)°, V = 1208,2(3) Å3 and Z = 4, final R(Rw) = 0.045(0.106). 2 crystallizes in the tetragonal space group P4/mcc with a = 8.251(1) Å, c = 19.961(4) Å, V = 1358,9(4) Å3 and Z = 4, final R(Rw) = 0.040(0.076). 3 crystallizes in the orthorhombic space group Fddd with a = 6.143(1) Å, b = 14.296(3) Å, c = 24.578(5) Å, V = 2158.4(7) Å3 and Z = 4, final R(Rw) = 0.039(0.095). The structures of 1 , 2 , and 3 consist of infinite, one-dimensional anionic chains containing X2Q64– units linked by Au+ ions and charge balancing K+/Cs+ ions situated between the chains. All compounds were investigated with differential thermal analysis, FT-IR, and solid state UV/VIS diffuse reflectance spectroscopy.  相似文献   

8.
The kinetics of the self-reactions of HO2, CF3CFHO2, and CF3O2 radicals and the cross reactions of HO2 with FO2, HO2 with CF3CFHO2, and HO2 with CF3O2 radicals, were studied by pulse radiolysis combined with time resolved UV absorption spectroscopy at 295 K. The rate constants for these reactions were obtained by computer simulation of absorption transients monitored at 220, 230, and 240 nm. The following rate constants were obtained at 295 K and 1000 mbar total pressure of SF6 (unit: 10−12 cm3 molecule−1 s−1): k(HO2+HO2)=3.5±1.0, k(CF3CFHO2+CF3CFHO2)=3.5±0.8, k(CF3O2+CF3O2)=2.25±0.30, k(HO2+FO2)=9±4, k(CF3CFHO2+HO2)=5.0±1.5, and k(CF3O2+HO2)=4.0±2.0. In addition, the decomposition rate of CF3CFHO radicals was estimated to be (0.2–2)×103 s−1 in 1000 mbar of SF6. Results are discussed in the context of the atmospheric chemistry of hydrofluorocarbons. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Synthesis and Structure of [(Me2PhP)3Cl2ReN]2ReCl4, [(Me2PhP)3Cl2ReN]2ReCl4 · 2 SbCl3 and [Re(NH)Cl2(PMe2Ph)3][SbCl6] The reaction of ReNCl2(PMePh)3 with SbCl5 in toluene yields the trinuclear complex [(Me2PhP)3Cl2Re≡N]2ReCl4 · 2 SbCl3 ( 1 · 2 SbCl3). It forms triclinic crystals with the composition 1 · 2 SbCl3, as well as monoclinic crystals 1 · 2 SbCl3 · 4 C7H8. The monoclinic crystals with the space group P21/c, and a = 1212.3(2), b = 2098.5(4), c = 1827.7(3) pm, β = 95.51(1)°, Z = 2, have been used for a crystal structure determination. In the centrosymmetric complex 1 two complexes ReNCl2(PMe2Ph)3 coordinate with their nitrido ligands a square planar, central unit ReCl4. The SbCl3 molecules are coordinated by chlorine bridges to Cl atoms of 1 , and, in addition, connect the complexes 1 with each other. The SbCl3 free compound 1 is obtained in good yield by the reaction of ReNCl2(PMePh)3 with ReCl4(NCEt)2. It crystallizes in the triclinic space group P1 with a = 1037.7(3), b = 1153.0(2), c = 1393.8(3) pm, α = 72.31(2)°, β = 74.06(2)°, γ = 67.94(2)°, and Z = 1. The bond lengths of the Re–N triple bonds are 172 pm in 1 and 170 pm in 1 · 2 SbCl3. By the reaction of ReNCl2(PMePh)3 with SbCl5 in CH2Cl2 the solvent is decomposed forming HCl which protonates the nitrido ligand to afford the imido complex [Re(NH)Cl2(PMe2Ph)3][SbCl6] ( 2 ) crystallizing in the monoclinic space group P21/n with a = 1221.4(2), b = 1358.6(2), c = 2177.3(1) pm, β = 92,72(1)° and Z = 4. The Re–N distance in the almost linear unit Re≡N–H is 169,1 pm.  相似文献   

10.
A variety of relative and absolute techniques have been used to measure the reactivity of fluorine atoms with a series of halogenated organic compounds and CO. The following rate constants were derived, in units of cm3 molecule?1 s?1: CH3F, (3.7 ± 0.8) × 10?11, CH3Cl, (3.3 ± 0.7) × 10?11; CH3Br, (3.0 ± 0.7) × 10?11; CF2H2, (4.3 ± 0.9) × 10?12; CO, (5.5 ± 1.0) × 10?13 (in 700 torr total pressure of N2 diluent); CF3H, (1.4 ± 0.4) × 10?13; CF3CCl2H (HCFC-123), (1.2 ± 0.4) × 10?12; CF3CFH2 (HFC-134a), (1.3 ± 0.3) × 10?12, CHF2CHF2 (HFC-134), (1.0 ± 0.3) × 10?12; CF2ClCH3 (HCFC-42b), (3.9 ± 0.9) × 10?12, CF2HCH3 (HFC-152a), (1.7 ± 0.4) × 10?11; and CF3CF2H (HFC-125), (3.5 ± 0.8) × 10?13. Quoted errors are statistical uncertainties (2σ). For rate constants derived using relative rate techniques, an additional uncertainty has been added to account for potential systematic errors in the reference rate constants used. Experiments were performed at 295 ± 2 K. Results are discussed with respect to the previous literature data and to the interpretation of laboratory studies of the atmospheric chemistry of HCFCs and HFCs. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Condensed Al6 Rings in the Subiodides La3Al2I2 and La2Al2I The subiodides La3Al2I2 and La2Al2I are reported. The compounds were prepared from stoichiometric mixtures of lanthanum, aluminium, and LaI3 under Ar atmosphere in sealed Ta ampoules at 920–950 °C and 980–1000 °C, respectively. La3Al2I2 crystallizes in space group C2/m with a = 19.73(2) Å, b = 4.318(1) Å, c = 12.348(9) Å and β = 121.49(3)°, La2Al2I in P63/mmc with a = 4.3718(8) Å and c = 17.605(2) Å (isotypic with Gd2Fe2I). Both structures are characterized by sheets of trigonal prisms formed by the La atoms centered by aluminium, the latter being arranged in Al6 rings. These rings are connected to chains in La3Al2I2 (dAl(2)–Al(2) = 2.550(4) Å and 2.615(2) Å, respectively) and layers (dAl–Al = 2.533(1) Å) in La2Al2I. Both compounds are metallic conductors. The electronic structure of both compounds is discussed based on band structure calculations.  相似文献   

12.
Synthesis of [Cu(m-HBH)2(OH2)2](NO3)2·2H2O, where m-HBH = C7H8O2N2 (3-hydroxybenzoylhydrazine), is described. The structure of the compound was studied by X-ray phase analysis and IR spectroscopy; crystal data are a = 57.415(6) Å, b = 19.760(2) Å, c = 7.586(2) Å; Fdd 2, Z = 16, R(F) = 0.053. The compound consists of [Cu(m-HBH)2(OH2)2]2+ complex cations, NO 3 ? anions, and two water molecules. The similarity between the IR spectra of Cu(m-HBH)2(NO3)2·nH2O and Co(m-HBH)2(NO3)2·5H2O, element analysis data, and crystal data obtained at the first stage of X-ray analysis show that the structures and compositions of these compounds are identical relative to the type of surroundings of the central atom. In contrast to the cobalt compound [Co(m-HBH)2(OH2)2](NO3)2·3H2O, in which the cobalt atom has a nearly regular octahedron as a coordination polyhedron, the copper(II) compound has a square bipyramid around the copper atom; c.n. is 6 = 4 + 2 (planar distances: 2.013(2) Å, 2.021(2) Å, 2.033(3) Å, 2.087(3) Å; axial distances: 2.367(3) Å, 2.374(3) Å) and lacks one crystallization water molecule.  相似文献   

13.
Investigation of Cocrystallization in the Systems Mn(OOCCH3)2-Co(OOCCH3)2-H2O, Mn(OOCCH3)2-Ni(OOCCH3)2-H2O, Mn(OOCCH3)2-Zn(OOCCH3)2-H2O at 60°C The three-component systems Mn(OOCCH3)2-Co(OOCCH3)2-H2O, Mn(OOCCH3)2-Ni(OOCCH3)2-H2O and Mn(OOCCH3)2-Zn(OOCCH3)2-H2O at 60°C were investigated by physio-chemical analysis. There is an interruption in the series of mixed crystals formed in the three-component systems. The inclusion of Co2+- and Ni2+ in Mn(OOCCH3)2 · 2 H2O of Mn2+ in Co(OOCCH3)2 · 2 H2O, Zn(OOCCH3)2 · 2 H2O and Ni(OOCCH3)2 · 4 H2O is based on isodimorphic substitution. It was found that in the system Mn(OOCCH3)2-Zn(OOCCH3)2-H2O crystallizes Zn(OOCCH3)2 · Mn(OOCCH3)2 · 2 H2O. It was identified by the X-ray and differential thermal analysis.  相似文献   

14.
The heptadentate Schiff base H3L reacts with cobalt(II) acetate in methanol to form the discrete dinuclear complex Co2L(OAc)2(OMe)(H2O)2 ( 1 ·2H2O). The reaction of 1 ·2H2O with NMe4OH·5H2O in methanol gives rise to displacement of the acetate by methanolate groups, yielding Co2L(OMe)3(H2O) ( 2 ·1H2O). Recrystallizations of the Schiff base, 1 ·2H2O and 2 ·H2O in different solvents, produce single crystals of H3L, 1 ·2.5H2O and 2 ·2MeOH, respectively. The crystal structures of 1 ·2.5H2O and 2 ·2MeOH show the cobalt atoms double bridged by and endogenous phenol oxygen atom and an exogenous methanolate oxygen donor, giving rise to Co2O2 cores with Co···Co distances of ca. 2.87 Å.  相似文献   

15.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

16.
Phosphorane Iminato Complexes of Titanium(IV) and Titanium(III). The Crystal Structures of [TiCl2(OMe)(NPPh3)]2, [TiBr2(NPPh3)]2 · 3C7H8, and [Ph3PNH2]Br · CH2Cl2 TiCl3(NPPh3) reacts with a solution of methyllithium in diethyl ether in the presence of lithiummethylate forming yellow [TiCl2(OMe)(NPPh3)]2. On reaction with benzyl magnesium bromide TiCl3(NPPh3) in diethyl ether is converted into green [TiBr2(NPPh3)]2 under reduction and ligand exchange. [TiBr2(NPPh3)]2 crystallizes from toluene with three molecules C7H8. [Ph3PNH2]Br · CH2Cl2 originates as a side product of this reaction. The products are characterized by their i.r. spectra and by crystal structure analyses. [TiCl2(OMe)(NPPh3)]2 . Space group P1 , Z = 2, structure solution with 2909 independent reflections, R = 0.063. Lattice dimensions at 20°C: a = 1005.1, b = 1044.5, c = 1068.6 pm, α = 66.98°, β = 89.35°, γ = 80.24°. The compound forms centrosymmetric dimeric molecules with μ2-OMe bridges and five-fold coordinated titanium atoms. The (NPPh3?) ligand is terminally connected with a Ti = N distance of 174.8 pm and with a TiNP bond angle of 165.3°. [TiBr2(NPPh3)]2 · 3 C7H8 . Space group P1 , Z = 2, structure solution with 5548 independent reflections, R = 0.053. Lattice dimensions at ?70°C: a = 983.3, b = 1162.7, c = 1376.5 pm, α = 100.53°, β = 110.30°, γ = 105.24°. The compound forms centrosymmetric dimeric molecules with μ2-NPPh3 bridges and tetrahedral coordination at the titanium atoms. With 195.9 pm the Ti–N bonds correspond with single bonds. The Ti …? Ti distance of 260.0 pm is exceptionally short. [Ph3PNH2]Br · CH2Cl2 . Space group P1 , Z = 1, structure solution with 3091 independent reflections, R = 0.049. Lattice dimensions at 20°C: a = 909.4, b = 1004.4, c = 1158.5 pm, α = 108.09°, β = 94.67°, γ = 91.92°. The bromide ions are bonded to a one-dimensional infinite network via hydrogen bridge bonds of the cation and of the dichloromethane.  相似文献   

17.
A static, non iso-thermal method is used to investigate the stability of uranyl phosphates. The resulting oxygen partial pressures can be expressed as: (UO2)3(PO4)2, (1089–1280°K) log pO2/atm = (−18480±400)/T+(13.11±0.33)(UO2)2P2O7, (979–1130°K) log pO2/atm = (−27460±540)/T+(24.26±0.51)UO2(PO3)2, (963–1118°K) log pO2/atm = (−25320±680)/T+(22.58±0.66).Using these results, a part of the phase diagram UOx (x = 2 to 3) − P2O5 is calculated.  相似文献   

18.
The kinetic data on the molecular oxygen activity of CH3CH·, CH3CF2 · and CF3CHF· radicals are reported. In laboratory, these radicals were generated by pulsed (12 ns) electron beam interaction with the gaseous RHF-O2-CO2 mixtures containing large excess of carbon dioxide (RHF = CH3CH2F, CH3CHF2 or CH2FCF3). The transient product (O3 or RFO2 ·) formation was monitored by the UV absorptions at 250 nm and the rate constants of Reactions (4) and (9) were obtained. The values of k 9 diminished with increasing number of fluorine atoms in RHF molecule. For CH3CH2F and CH3CHF2 the k 9’s were equal to (8.8–10.2)·10−14cm3 ·s−1 and (7.3–8.4)·10−14cm3 ·s−1, respectively, and seem to be determined for the first time. In the case of CH2FCF3 the obtained value of k CF3CHF+O2 = 5.20±0.76·10−14cm3 ·s−1 is much higher than the value published in the literature.4 The other determined rate constant data are comparable to the literature values.  相似文献   

19.
Oxidation Products of Intermetallic Compounds. III. Low Temperature Forms of K2Sn2O3 and Rb2Sn2O3 and a Notice about K2Ge2O3 By controlled oxidation of KSn (at 320°C) and RbSn (at 410°C) with O2 the hitherto unknown low temperature forms of K2Sn2O3 (a = 8.4100(8) Å) and Rb2Sn2O3 (a = 8.6368(8) Å) are obtained, which are isotopic with cubic K2Pb2O3. Oxidation at higher temperatures (at 510–5207°C) leads to the well-known HT-forms. The Madelung Part of Lattic Energie, MAPLE, is calculated for both compounds. K2Pb2O3, Rb2Pb2O3, Cs2Pb2O3, and Cs2Sn2O3 have been prepared too by oxidation of KPb, RbPb, CsPb, and CsSn. Oxidation of KGe (at 400°C) leads to the first oxogermanate(II), K2Ge2O3 (cubic a = 8.339(1) Å, isotypic with K2Pb2O3) together with K6Ge2O7.  相似文献   

20.
The reaction of (S)-(-)-1, l-diphenyl-propane-1,2-diol with AlCl3 in diethyl ether furnishes the product [Al((S)-(-)-μ2-OC(H)(Me)C(Ph)2OH)Cl2]2 1, which decomposes slowly above 25 °C. Complex 1·2Et2O Crystallizes in the non-centrosymmetric monoclinic space group P21 with a=10.591(1) Å, b=16.718(1) Å, c = 12.156(2) Å, β=99.30(2)°, V = 2124.1(3) Å3, z = 4, R = 4.67%, Rw=4.84%, GoF=1.14. The structure of 1 shows a dimer feature, which is hydrogen bonded to two diethyl ether molecules. In the reaction of 2-phenoxyethanol with AlMe3, the dimeric [(μ-O(CH2)2OPh)AlMe2]2 is obtained in high yield. 2 crystallizes in the monoclinic space group P21/c with a = 7.398(2) Å, b = 7.376(2) Å, c = 20.710(2) Å, β = 90.56(2)°, v = 1129.9(4) Å3, z=4, R=5.70%, Rw=7.15%, GoF=1.59.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号