首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selective reversed phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the identification of erythromycin impurities and related substances in commercial erythromycin samples. Mass spectral data are acquired on a LCQ ion trap mass spectrometer equipped with an electrospray interface operated in positive ion mode. The LCQ is ideally suited for identification of impurities and related substances because it provides on-line LC/MS(n) capability. Compared with UV detection, this hyphenated LC/MS(n) technique provides as a main advantage efficient identification of novel substances without time-consuming isolation and purification procedures. Using this method four novel related substances were identified in commercial samples.  相似文献   

2.
The characterization of unknown impurities present in netilmicin and sisomicin by liquid chromatography (LC) coupled with mass spectrometry (MS) is described. The volatile ion-pairing agent trifluoroacetic acid (TFA) was used for the retention of the main compounds and their impurities on a reversed-phase (RP) C18 column, because they are highly hydrophilic and basic compounds. The method showed good separation between netilmicin and its four potential related substances prescribed in the European Pharmacopoeia, which were identified by comparison of their retention times with those of the reference substances. Furthermore, in total 16 unknown impurities in a netilmicin sample and six in a sisomicin sample with unknown identity were detected. The structures of the unknown compounds were deduced based on comparison of fragmentation patterns with those of the reference substances investigated in LC/MSn experiments by the use of electrospray ion trap mass spectrometry.  相似文献   

3.
With a recently developed liquid chromatographic (LC) method, using a phosphate buffer, several unknown impurities present in dirithromycin samples were separated. In this paper, a reversed-phase liquid chromatography-tandem mass spectrometry method is described for the investigation of dirithromycin and related substances. The method employed uses a Zorbax Extend C18 column (250 mm x 4.6 mm I.D.), 5 microm, and a mobile phase consisting of acetonitrile, 2-propanol, water and ammonium acetate solution pH 8.5. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an electrospray ion (ESI) source operated in the positive ion mode. The LCQ is ideally suited for the identification of related substances because it provides on-line LC/MS(n) capability, which allows efficient identification without time-consuming isolation and purification procedures. Using this method, the fragmentation behavior of dirithromycin and its related substances was studied and the unknown impurities occurring in commercial samples were investigated. In total the structures of nine impurities were elucidated, among which three were different analogues with a modification in the side chain on the oxazine ring. Two impurities showed a different alkyl group in position C13. In two impurities the desosamine sugar was involved with changes in the degrees of methylation of the amino group. One unknown impurity was identified as dirithromycin F and another unknown was characterized as dirithromycin N-oxide.  相似文献   

4.
A method for purity control of newly synthesized lactic acid–based liquid crystals has been developed. The electrokinetic chromatography proved to be suitable for the separation of these electroneutral substances from their impurities. The separations were performed in an acidic acetonitrile-based background electrolyte (BGE) with a pseudostationary phase formed by a cationic surfactant. During the optimization step, appropriate concentrations of cetyltrimethylammonium bromide, acetic acid, and water were seeked. In the optimized method, separations were carried out in acetonitrile with 1-mol/L acetic acid, 80-mmol/L cetyltrimethylammonium bromide, and 6% (v/v) water. Interesting positive effects of a small water content in the BGE on electroosmotic flow and resolution of liquid crystal substances from their impurities were observed and discussed. Samples of five liquid crystal substances, both pure and containing impurities from synthesis, were analyzed. The identification of analytes was based on a comparison of relative migration times related to the migration time of mesityl oxide. For all five samples, impurities were separated from the liquid crystals and the method thus showed its viability. To the best of our knowledge, this method is used for the first time for the purity control of newly synthesized liquid crystals. This method can be used to confirm or complement the results obtained by commonly used high-performance liquid chromatography and supercritical fluid chromatography methods. Furthermore, the electrokinetic chromatography method requires very small amounts of sample, solvents, and buffer constituents. Overall, its operational costs are significantly lower.  相似文献   

5.
The characterization of unknown impurities present in neomycin sulfate by liquid chromatography (LC) coupled with ion trap mass spectrometry (ITMS) is described. The volatile LC method was developed using an evaporative light scattering detector due to its lower investment and operating costs, easier operation and less maintenance than mass spectrometry. The method shows separation of neomycin B from seven potential related substances reported in the European Pharmacopoeia and several other unknown impurities. The unknown impurities were further investigated by coupling the developed LC method with ITMS. Their structures were deduced based on the fragmentation patterns obtained from reference substances. Four unknowns were identified as isomers of paromamine, LP-A, neamine and LP-B.  相似文献   

6.
A simple high‐performance liquid chromatography/electrospray ionization tandem mass spectrometric (HPLC/ESI‐MS/MS) method has been developed for the rapid identification of clindamycin phosphate and its degradation products or related impurities in clindamycin phosphate injection. Detection was performed by quadrupole time‐of‐flight mass spectrometry (Q‐TOFMS) via an ESI source in positive mode. Clindamycin phosphate and its related substances lincomycin, 7‐epilincomycin‐2‐phosphate, lincomycin‐2‐phosphate, clindamycin B, clindamycin B‐2‐phosphate, and clindamycin were identified simultaneously by HPLC/ESI‐MS/MS results. Based on the MS/MS spectra of their quasi‐molecular ions, the fragmentation pathways of clindamycin phosphate and its related substances were compared and proposed, which are specific and useful for the identification of the lincosamide antibiotics and related impurities. The method was rapid, sensitive and specific and can be used to identify clindamycin phosphate and its related impurities in clindamycin phosphate injection without control compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A reversed-phase liquid chromatography/tandem mass spectrometry method is described for the investigation of spiramycin and related substances. The method uses an XTerra C18 column (250 x 4.6 mm i.d.), 5 microm, and a mobile phase consisting of acetonitrile, methanol, water and ammonium acetate solution, pH 6.5. Mass spectral data were acquired on an LCQ ion trap mass spectrometer equipped with atmospheric pressure chemical ionization (APCI) operated in the positive ion mode. Using this method, the fragmentation behavior of spiramycin and its related substances was studied and the unknown impurities occurring in commercial samples were investigated. In total 17 compounds were identified, among which three reported as specified impurities in the European Pharmacopoeia. The other impurities showed mainly a modification in the forosamine sugar or in the substituent at C-3 and C-6 positions. In one impurity, the mycarose sugar is absent.  相似文献   

8.
高效液相色谱-串联质谱法分离鉴定绿原酸及其相关杂质   总被引:6,自引:0,他引:6  
田晨煦  徐小平  廖丽云  张洁  刘静  周莎 《色谱》2007,25(4):496-500
建立了高效液相色谱-串联质谱法(HPLC-MS/MS)分离和鉴定绿原酸及其相关杂质的方法。采用C18色谱柱(5 μm,4.6 mm×150 mm),乙腈-水(含0.1%甲酸)(体积比为8∶92)为流动相,经HPLC-MS/MS和HPLC-二极管阵列检测器在线检测,对工业绿原酸中的奎尼酸、咖啡酸、绿原酸同分异构体等8个相关杂质的结构进行了鉴定。  相似文献   

9.
The European Pharmacopoeia (Ph. Eur.) describes liquid chromatography-ultraviolet (LC-UV) methods using C18 stationary phases for the analysis of polymyxin B and colistin.Several unknown impurities were detected in commercial samples of those polypeptide complexes. However, the Ph. Eur. does not specify any related substances for polymyxin B and colistin. Since both methods use non-volatile buffers, the mobile phases were incompatible with mass spectrometry (MS). For the identification of related substances in bulk samples by LC/MS, volatile mobile phase systems were developed. However, the LC/MS methods (with volatile additives) showed inferior chromatographic separation compared to the LC-UV method (with non-volatile additives). Moreover, previously identified impurities by LC/MS could not be assigned in LC-UV methods as the separation in both systems was different.In this study, known impurities were traced in the LC-UV methods and new impurities present in polymyxin B and colistin bulk samples were characterized. To achieve this, each peak from the non-volatile system was collected separately and reinjected into an LC system with a volatile mobile phase coupled to MS. This way, collected impurity peaks were rechromatographed on a reversed phase column in order to separate the analyte from the buffer salts. Using this method, out of 39 peaks, five novel related substances were characterized in a polymyxin B bulk sample. Fourteen impurities, which were already reported in the literature were traced as good as possible in the LC-UV method. In the case of colistin, a total of 36 peaks were investigated, among which four new compounds. Additionally, 30 known impurities were traced in the LC-UV method.  相似文献   

10.
In this study a reversed phase ion-pair high-performance liquid chromatography (HPLC) method using charged aerosol detection (CAD) was developed and fully validated for the pharmaceutical quality control of l-aspartic acid (Asp). With a slight modification, the method also allows the evaluation of related substances in l-alanine (Ala). The method enables simultaneous control of related amino acids and of possibly occurring organic acids contaminants. A minimum limit of quantification of 0.03% could be achieved for all occurring related substances. Moreover, the detector sensitivity of the CAD was compared with an evaporative light scattering detector (ELSD). Depending on the analyte the CAD was found to be 3.6–42 times more sensitive than the ELSD. The HPLC method was applied to the purity testing of 8 samples of pharmaceutical grade and reagent grade Asp and of 12 samples of Ala supplied by various manufacturers. Both substances were found to be of high purity (greater than 99.8% for Asp and greater than 99.9% for Ala). Malic acid and Ala were the major impurities in Asp. Asp and glutamic acid (Glu) were the only detectable impurities in Ala.  相似文献   

11.
High‐performance liquid chromatography analysis of vonoprazan fumarate, a novel proton pump inhibitor drug revealed six impurities. These were identified by liquid chromatography with mass spectrometry. Further, the structures of the impurities were confirmed by synthesis followed by characterization by mass spectrometry, NMR spectroscopy, and infrared spectroscopy. On the basis of these data and knowledge of the synthetic scheme of vonoprazan fumarate, the previously unknown impurity was identified as 1‐[5‐(2‐fluorophenyl)‐1‐(pyridin‐3‐ylsulfonyl)‐1H‐pyrrol‐3‐yl]‐N‐methyldimethylamine, which is a new compound. The possible mechanisms by which these impurities were formed were also discussed. A high‐performance liquid chromatography method was optimized in order to separate, selectively detect, and quantify all process‐related impurities of vonoprazan fumarate. The presented method has been validated in terms of linearity, limits of detection, and quantification, and response factors and, therefore, is highly suitable for routine analysis of vonoprazan fumarate related substances as well as stability studies.  相似文献   

12.
Until now no liquid chromatography (LC) method is described to determine the purity and content of troleandomycin and its related substances. A simple, robust, sensitive and selective isocratic liquid chromatographic method suitable for the determination of the antibiotic troleandomycin and its related substances is described. This method utilizes as a stationary phase: XTerra RP18 5 microm (25 cm x 4.6 mm I.D.) at 30 degrees C and as mobile phase: acetonitrile-0.2 M ammonium acetate buffer (pH 6.0)-water (45:5:50, v/v), delivered at a flow-rate of 1.0 ml/min. UV detection is performed at 205 nm. Troleandomycin is separated from the partially acetylated related substances and from several unknown impurities present in commercial samples. The robustness of the method was evaluated by a full-factorial experimental design.  相似文献   

13.
采用反相离子对高效液相色谱/蒸发光散射检测法研究了唑来膦酸及其有关物质的色谱分析与分离方法。优化了色谱条件,固定相为Hypersil C8柱,以含10 mmol/L正戊胺的5mmol/L乙酸铵缓冲液(用乙酸调节pH至7.0)-甲醇(体积比为97:3)为流动相,流速为1.0mL/min,蒸发光散射检测器检测。在该色谱条件下,唑来膦酸与其有关化合物(包括合成过程中残余的原料咪唑乙酸及分解产物亚磷酸、磷酸盐)的分离良好,唑来膦酸色谱峰与最近杂质峰的分离度大于1.5。本法简便快速,为唑来膦酸的常规分析提供了有效可靠的方法。  相似文献   

14.
Investigation of acetylspiramycin (ASPM) and its related substances was carried out using a reversed-phase liquid chromatography/tandem mass spectrometry method. The identification of impurities in the ASPM complex was performed with a quadrupole ion trap mass spectrometer, with an electrospray ionization (ESI) source in the positive ion mode which provides MSn capability. A total of 83 compounds were characterized in commercial samples, among which 31 impurities that had never been reported and 31 partially characterized impurities were deduced using the collision-induced dissociation (CID) spectra of major ASPM components as templates. Most of the major impurities arise from the starting materials and the synthesis process. This work provides very useful information for quality control of ASPM and evaluation of its synthesis process.  相似文献   

15.
A simple and rapid reversed-phase liquid chromatography (LC) method with photodiode array (PDA) and electrospray ionization (ESI)-mass spectrometry (MS) as detectors was developed and validated to separate, identify, and quantitate the related substances of Doxazosin mesylate (DXZN) for monitoring the reactions involved during process development. The high-performance liquid chromatography profiles of related-substances of DXZN are used as fingerprints to follow the procedures used in the manufacturing units. The separation is accomplished on an Inertsil ODS-3 column with acetonitrile-ammonium acetate (10 mM, pH 4.0) as the mobile phase, using a gradient elution mode and monitoring the eluents by a photodiode array detector at 265 nm at ambient temperature. LC-ESI-MS-MS is used to identify the additional impurities formed during the synthesis. The identified impurities were synthesized and characterized by UV, Fourier transform-IR, 1H NMR, and MS data. The detection limits for the impurities are 0.74 - 4.14 x 10(-9) g, and the method is found to be suitable not only for the monitoring of synthetic reactions, but also for quality assurance of DXZN in bulk drugs and formulations.  相似文献   

16.
目前,万古霉素色谱分析方法主要为反相色谱法,该法分离万古霉素及其杂质时,存在极性选择性不足以及所使用的流动相体系与质谱兼容性差等问题。基于亲水作用色谱(HILIC)对糖肽类物质的色谱保留和极性选择性,本文选取万古霉素及其常见杂质为对象,考察了HILIC固定相、流动相组成比例、缓冲盐添加剂浓度和pH值等色谱条件,对万古霉素及其主要杂质进行了HILIC分离方法研究。确立了以Click XIon色谱柱为固定相,以甲酸铵为流动相添加剂的亲水作用色谱条件,实现了万古霉素及主要杂质的分离,为万古霉素类化合物的分离提供了新的途径。  相似文献   

17.
A selective reversed-phase liquid chromatography/mass spectrometry (LC/MS(n)) method is described for the identification of azithromycin impurities and related substances in commercial azithromycin samples. Mass spectral data are acquired on an LCQ ion trap mass spectrometer equipped with an atmospheric pressure chemical ionization interface operated in positive ion mode. The LCQ provides on-line LC/MS(n) capability, making it ideally suited for identification purposes. In comparison with UV detection, this hyphenated technique provides as its main advantage efficient identification of novel substances without time-consuming isolation and purification procedures. Using this technique, six novel related substances detected in commercial azithromycin samples have been studied.  相似文献   

18.
Mycophenolate mofetil is an antiproliferative immunosuppressive agent. Since its clinical efficacy and safety highly depend on the quality, the stability, and impurity profiles of mycophenolate mofetil are paid ever‐increasing attention. However, there are few published studies reporting the complete characterization of both the process‐related substances and degradation products in mycophenolate mofetil. In the present study, a highly specific and efficient liquid chromatography coupled with quadrupole‐time of flight mass spectrometry method was developed for the separation and identification of all the potential impurities in mycophenolate mofetil. According to the ICH Q1A (R2) guideline, the forced degradation studies were conducted to elucidate the stability and degradation pathways of mycophenolate mofetil. A total of 15 related substances, including the process‐related substances and stress degradation products were characterized by the established hyphenated method, 11 of them have not been reported before. In view of the synthetic route and degradation pathways of mycophenolate mofetil, the origins and formation mechanisms of these related substances were discussed. Based on the obtained stability and impurity profiles, key points of the manufacturing process were proposed to deliver mycophenolate mofetil with high purity.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic method for simultaneous separation and determination of citalopram hydrobromide and its process impurities in bulk drugs and pharmaceutical formulations was developed. The separation was accomplished on an Inertsil ODS 3V (250x4.6 mm; particle size 5 mum) column using 0.3% diethylamine (pH = 4.70) and methanol/acetonitrile (55:45 v/v) as mobile phase in a gradient elution mode. The eluents were monitored by a photodiode array detector set at 225 nm. The chromatographic behavior of all the related substances was examined under variable conditions of different solvents, buffer concentrations, and pH. The method was validated in terms of accuracy, precision, and linearity. The method could be of use not only for rapid and routine evaluation of the quality of citalopram in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Three unknown impurities were consistently observed during the analysis of different batches of citalopram. Forced degradation of citalopram was carried out under thermal, photo, acidic, alkaline, and peroxide conditions. The degradation products and unknown impurities were isolated and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectroscopy.  相似文献   

20.
Reference materials certified for purity are essential to ensure harmonization of analytical measurements. LGC is currently certifying these materials using an indirect multi-method approach quantifying impurities: Related substances using high-performance liquid chromatography, gas chromatography (GC), differential scanning calorimetry; Residual solvents using headspace GC coupled to mass spectrometry; Inorganic content using ashing, acid digest ion couple plasma mass spectrometry or thermogravimetric analysis; Water using oven coulometric Karl Fischer/direct addition coulometric Karl Fischer. Related substances are not straightforward to quantify without an appropriate standard due to possible difference in response factor for the impurity relative to the main compound. In this article, existing LGC RMs certified for purity were purified further using semi-preparative HPLC. These ultra-purified organic substances were virtually free of related substances making their purity assessment faster and more straightforward, i.e., no need to identify impurities and subsequently quantify them. After characterization, these ultra-purified standards were used as calibrants to determine directly the mass fraction of the analyte in the original CRM using exact matching single-point HPLC calibration. This new approach opens the possibility of certifying the purity of low purity substances with a relative small uncertainty without the need of identifying the impurities present in the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号