首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
在光纤陀螺中,由于保偏光纤的性能易受环境的影响,制约了光纤陀螺稳定性和精度的进一步提高。保偏光子晶体光纤的研究为光纤陀螺解决环境适应性问题提供了新思路,针对保偏光子晶体光纤与传统光纤的模场匹配问题,采用有限元方法,对保偏光子晶体光纤的保偏性能和模场分布特性进行了分析与研究。通过分析不同空气孔尺寸对保偏光子晶体光纤性能的影响,得到其保偏性能与模场分布特性存在相互制约性。提出了一种改善保偏光子晶体光纤模场分布的方法,并通过仿真分析验证了这一方法的可行性,这为光纤陀螺用光子晶体光纤的发展提供了借鉴。  相似文献   

2.
光子晶体光纤陀螺技术是解决光纤陀螺空间辐照及热漂移问题的重要技术途径,其中光子晶体光纤环是影响光纤陀螺性能的关键。仿真分析了光子晶体光纤的双折射与结构设计的关系,并计算了光纤的双折射和光纤环绕制过程引入的附加双折射的温度灵敏度,利用白光干涉仪,对光子晶体光纤环和普通的保偏光纤环进行了对比测试分析。试验结果表明,光子晶体光纤环具有较低的偏振特性温度灵敏度,双折射温度系数比普通保偏光纤低接近1个量级,引起的陀螺偏振误差也比普通保偏光纤环小1倍左右。试验结果验证了理论分析的正确性。  相似文献   

3.
提出了一种内层空气孔环含有五个空气孔的新型高双折射光子晶体光纤结构;采用全矢量有限元法进行分析,研究了该光子晶体光纤两正交偏振模的有效折射率和双折射,分别给出了该五角芯型保偏光子晶体光纤双折射随输入光波长和大空气孔半径的变化曲线.分析结果表明:该五角芯型保偏光子晶体光纤的双折射很易达到i0-3量级甚至更高,比传统保偏光纤的双折射至少高出一个数量级,合理设计光纤结构参数,该保偏光纤的双折射在1550 nm处可以达到6.5×10-3以上,甚至更高,适合应用于偏振特性及稳定性要求都较高的实际光纤传感系统,例如光纤陀螺.  相似文献   

4.
针对空间辐照带来的光功率衰减和卫星轨道周期带来的周期性温变效应,基于光子晶体光纤单一材料特点带来的抗辐照和弱温度敏感特性,提出开展空间用高精度光子晶体光纤陀螺技术研究.通过设计实芯光子晶体光纤结构,完成损耗<1.5 dB/km、偏振串音<-24 dB/km和直径135μm的光子晶体光纤技术验证,并采用八极对称绕制技术完...  相似文献   

5.
光子晶体光纤具有抗辐射、抗弯曲、抗磁场干扰和温度敏感性低等优势,是空间用光纤陀螺的理想选择.针对空间用光纤陀螺,提出了四层孔和双层孔陀螺用光子晶体光纤结构,突破了光子晶体光纤长距离拉制关键技术,批量制备了陀螺用长距离低损耗实芯光子晶体光纤与空芯光子晶体光纤,利用开发的光子晶体光纤周向散射、背向散射、温度、磁等性能测试设...  相似文献   

6.
在应用系统的牵引及光学器件技术的推动下,工程化光纤陀螺朝着小型化、轻量化、高精度方向发展,设计了一种基于新型超细径(60/100)光纤制作的高精度光纤陀螺。相比于传统细径保偏光纤,新型超细径光纤可增加光纤的抗弯曲程度,也可使光纤环圈的绕制半径减少;同时,由于光纤变细,光纤环厚度减小,当环境温度改变时,内外层光纤温度差减小,有利于改善光纤陀螺环圈全温性能,提高光纤陀螺温度特性。首先研究了新型超细径光纤纤芯、包层结构设计,在此基础上为针对性提高涂覆胶体、绕环胶体材料的可靠性,建立了胶体材料性能随时间退化的模型;随后,基于上述新型光纤和小型化宽谱ASE光源,成功搭建了高精度光纤陀螺仪样机,陀螺整机尺寸为70 mm×70 mm×35 mm,陀螺测试零偏稳定性可达0.007°/h,可以满足陀螺小型化、轻量化、高精度需求。  相似文献   

7.
针对三轴光纤陀螺共用光源问题,提出了一种新型的多芯液晶光子晶体光纤,该光纤具有三个呈等边三角形几何形状排列的液晶纤芯.利用有限元法对其功率分布、模场、有效折射率和色散特性进行了数值分析,结果表明,这种三芯液晶光子晶体光纤可将传输光完全等分为三束光,且具有平坦色散特性,在波长为1.45μm~1.75μm之间的色散变化小于2 ps·km-1·nm-1.此外,该光纤在大约150 nm的波长范围内显示出超平坦的色散,并且可以通过改变中心空气孔的直径来调整超平坦色散的波长范围.研究成果对液晶光子晶体光纤、三轴光纤陀螺和三相光纤电流互感器的等光分束器、1×3多芯光子晶体耦合器和平坦色散光纤的进一步发展具有重要意义.  相似文献   

8.
针对三轴光纤陀螺共用光源问题,提出了一种新型的多芯液晶光子晶体光纤,该光纤具有三个呈等边三角形几何形状排列的液晶纤芯。利用有限元法对其功率分布、模场、有效折射率和色散特性进行了数值分析,结果表明,这种三芯液晶光子晶体光纤可将传输光完全等分为三束光,且具有平坦色散特性,在波长为1.45μm~1.75μm之间的色散变化小于2 ps·km~(-1)·nm~(-1)。此外,该光纤在大约150 nm的波长范围内显示出超平坦的色散,并且可以通过改变中心空气孔的直径来调整超平坦色散的波长范围。研究成果对液晶光子晶体光纤、三轴光纤陀螺和三相光纤电流互感器的等光分束器、1×3多芯光子晶体耦合器和平坦色散光纤的进一步发展具有重要意义。  相似文献   

9.
光纤陀螺用于敏感载体旋转角速率,是惯性导航系统的核心传感器之一。未来军用及民用领域对小体积、低成本的光纤陀螺需求巨大。利用光子集成芯片代替传统光纤分立器件,借助集成光学光刻工艺大规模批量生产的优势,降低生产成本,提高出货量,是光纤陀螺发展的重要方向。因此,在充分考虑目前国内微纳加工水平基础上,提出了一种工艺实现相对简单、可快速工程化的硅基光子集成芯片光纤陀螺设计方案。基于开环光纤陀螺架构,设计并加工了硅基光子芯片,实现了陀螺全部无源器件的片上集成,光子芯片尺寸约4 mm×3 mm;设计加工了四通道超细径保偏光纤阵列,实现波导与光纤多个耦合点的一次对准,大幅提高耦合封装效率;实现了光子集成芯片光纤陀螺样机25°C时零偏稳定性达到0.2°/h,性能优于相同结构的传统全光纤器件光纤陀螺。  相似文献   

10.
针对陀螺应用场景下超细径保偏光纤机械强度评估需求,提出一种基于可拉伸骨架的超细径保偏光纤强度评估方法,超细径保偏光纤绕制于可拉伸骨架之上形成光纤环圈可模拟出成环应力过程,采用该光纤环圈构建光纤陀螺,环圈骨架内的压电堆栈可驱动骨架带动超细径保偏光纤周期性拉伸,对超细径保偏光纤起到应力激励施加效果可激发光纤疲劳以实现光纤强度快速评估与筛选,同时在超细径保偏光纤内形成相位调制功能以实现陀螺偏置调制,陀螺信号长期输出变化情况可表征超细径保偏光纤力学特性优劣。该方法能够体现出超细径保偏光纤成环应力施加的复杂性和陀螺应用光纤长期张紧、弯曲等条件下应力长期演变性,有助于陀螺用超细径保偏光纤强度评估与筛选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号