首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of crown ethers 12C4, 15C5 and 18C6 (CE) in aqueous phase influences extraction-separation of zinc and lead ions (M2+) by acidic extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in cyclohexane. In fact, higher complexing ability of the crown ethers towards lead ions causes a greater shift toward higher pH region of the extraction curves versus aqueous phase pH, and consequently an enhancement in the extraction selectivity. The order of extraction selectivity in the presence of the crown ethers varies as 18C6 > 15C5 > 12C4. The analysis of extraction data allows evaluating the stability constants of [M?CE]2+ complexes in the aqueous phase. It is demonstrated that the influence of aqueous crown ethers on the extraction process is deeply affected by the organic diluent used. The influence of temperature on the extraction process was studied in the range 286–302 K. This study lets estimating the thermodynamic parameters, i.e., free-energy (ΔGº), enthalpy (ΔΗº), and entropy (ΔSº) changes associated with the extraction process as well as the complexation of cations by the crown ethers in water.  相似文献   

2.
The removal of methyl green (MG) dye from aqueous solutions using acid- or alkali-treated Pinus brutia cones (PBH and PBN) waste was investigated in this work. Adsorption removal of MG was conducted at natural pH, namely, 4.5 ± 0.10 for PBH and near 4.8 ± 0.10 for PBN. The pseudo-second-order model appeared to be the most appropriate to describe the adsorption process of MG on both PBN and PBH with a correlation coefficient R2 > 0.999. Among the tested isotherm models, the Langmuir isotherm was found to be the most relevant to describe MG sorption onto modified P. brutia cones with a correlation factor R2 > 0.999. The ionic strength (presence of other ions: Cl?, Na+, and SO42?) also influences the adsorption due to the change in the surface properties; it had a negative impact on the adsorption of MG on these two supports. A reduction of 68.5% of the adsorption capacity for an equilibrium dye concentration Ce of 30 mg/L was found for the PBH; while with PBN no significant influence of the ionic strength on adsorption was observed, especially in the presence of NaCl for dye concentrations superior to 120 mg L?1.  相似文献   

3.
C-acylation of calix[n]arenes is an important reaction which has been primarily utilized for their further functionalization to provide conformers with varying shapes, cavity dimensions and molecular receptor characteristics that can bind ionic and neutral species in a selective and specific manner. The length of the alkyl chain at the upper or the lower rim of calixarenes can be adjusted as required to give derivatives which can span the channels and membranes and majorly influence transport phenomenon. As a part of our program to obtain calixarene based derivatives that can span and scan artificial membranes, C-acylation of calix[4]arene has been examined to yield peracylated and partially acylated calixarene ethers. 5,11,17,23-Tetraacetyl-25,26,27,28-tetramethoxycalix[4]arene has been obtained in 80 % yield by treatment of tetramethoxycalix[4]arene with acetyl chloride in the presence of aluminum chloride using dichloromethane as the solvent. The structure was established by the conversion to corresponding phenyl hydrazones and oximes. The tetraacetyltetramethoxycalix[4]arene 2a crystallized in a monoclinic lattice, space group P21/C with a = 10.320(2) Å, b = 18.928(4) Å, c = 18.421(4) Å, β = 95.44(3)o, Z = 4. The corresponding methyl substituted O7 directs inwards towards the cavities of calix[4]arene to give an inward flattened partial cone conformation. Molecular packing shows the presence of intermolecular C–H···O, H-bonding interactions between methyl and methylene hydrogens and oxygens of the acetyl groups.  相似文献   

4.
The present study deals with chemical reactions and enthalpies during the synthesis of Cu2ZnSnSe4 (CZTSe) from CuSe, SnSe, and ZnSe in molten NaI as flux material in closed degassed ampoules. Differential thermal analysis (DTA) at heating rates 5 °C min?1 and cooling rates 10 °C min?1 were used for the determination of temperatures of phase transitions and/or chemical reactions. XRD and Raman analyses confirmed that the formation of CZTSe starts already at 380 °C after the melting of Se that deliberates from the transformation of CuSe to Cu1.8Se, and the CZTSe formation process impedes to a great extent due to the presence of solid NaI. After the melting of NaI, the formation of CZTSe is completed. For the determination of enthalpy values, the calibration with pure NaI was performed. The thermal effects and enthalpies were compared with the available known thermodynamical values. The specific enthalpy of exothermic Cu2ZnSnSe4 formation at 661 °C in NaI ?36 ± 3 kJ mol?1 was determined experimentally for the first time. Ternary compound Na2SnSe3 was formed during the synthesis process. NaI·2H2O, if present in NaI, was found to be a critical issue in the synthesis process of CZTSe monograin powders in molten NaI—it gave rise to the formation of oxygen-containing by-products Na2SeO4 and Na2Cu(OH)4. The complete dehydration of NaI·2H2O at T ≤ 70 °C in vacuum is necessary to avoid the formation of oxygen-containing compounds.  相似文献   

5.

Polyaniline of low molecular weight (ca. 10 kDa) is combined with cellulose nanofibrils (sisal, 4–5 nm average cross-sectional edge length, with surface sulphate ester groups) in an electrostatic layer-by-layer deposition process to form thin nano-composite films on tin-doped indium oxide (ITO) substrates. AFM analysis suggests a growth in thickness of ca. 4 nm per layer. Stable and strongly adhering films are formed with thickness-dependent coloration. Electrochemical measurements in aqueous H2SO4 confirm the presence of two prominent redox waves consistent with polaron and bipolaron formation processes in the polyaniline–nanocellulose composite. Measurements with a polyaniline–nanocellulose film applied across an ITO junction (a 700 nm gap produced by ion beam milling) suggest a jump in electrical conductivity at ca. 0.2 V vs. SCE and a propagation rate (or percolation speed) two orders of magnitude slower compared to that observed in pure polyaniline This effect allows tuning of the propagation rate based on the nanostructure architecture. Film thickness-dependent electrocatalysis is observed for the oxidation of hydroquinone.

  相似文献   

6.
Polyvinylferrocene (PVF) was used as a mediator for the fabrication of a horseradish peroxidase (HRP)-modified electrode to detect phenol derivatives via a composite polymeric matrix of conducting polypyrrole (PPy). Through an electropolymerization process, enzyme HRP was entrapped with PPy in a three-electrode system onto a glassy carbon electrode previously covered with PVF, resulting in a composite polymeric matrix. Steady-state amperometric measurements were performed at ?200 mV vs. Ag/AgCl in aqueous phosphate buffer containing NaCl 0.1 M (pH 6.8) in the presence of hydrogen peroxide. The response of the HRP-modified PVF electrode was investigated for various phenol derivatives, which were 4-chlorophenol, phenol, catechol, hydroquinone, 2-aminophenol, pyrogallol, m-cresol, and 4-methoxyphenol. Analytical parameters for the fabricated PVF electrode were obtained from the calibration curves. The highest sensitivity was obtained from the calibration of 4-chlorophenol as 29.91 nA/μM. The lowest detection limit was found to be 0.22 μM (S/N?=?3) for catechol, and the highest detection limit was found to be 0.79 μM (S/N?=?3) for 4-methoxyphenol among the tested derivatives. The biosensor can reach 95% of steady-state current in about 5 min. The electrode is stable for 2 months at 4 °C.  相似文献   

7.
A novel, facile, solid-phase, organic synthesis of 1-(E)-styryl-4-substituted-1,2,3-triazoles in good yields and purities via traceless sulfone linker has been developed. Key steps involved in this synthetic procedure include (i) sulfone alkylation of sulfinate resin with (2-azido-1-iodoethyl)benzene, (ii) [3 + 2] cycloaddition with terminal alkynes in the presence of CuI, and (iii) traceless product release by base-mediated elimination process.  相似文献   

8.
Dry gamma-valerolactone (GVL) is stable for several weeks at 150 °C and its thermal decomposition only proceeds in the presence of appropriate catalysts. Since GVL does not react with water up to 60 °C for several weeks, it could be used as a green solvent at mild conditions. At higher temperatures, GVL reacts with water to form 4-hydroxyvaleric acid (4-HVA) and reaches the equilibrium in a few days at 100 °C. Aqueous solutions of acids (HCl and H2SO4) catalyze the ring opening of GVL even at room temperature, which leads to the establishment of an equilibrium between GVL, water, and 4-HVA. Although the 4-HVA concentration would be below 4 mol% in the presence of acids, it could be higher than the concentration of a reagent or a catalyst precursor, not to mention a catalytically active species. The latter could be especially worrisome as 4-HVA could be an excellent bi- or even a tri-dentate ligand for transition metals. Aqueous solution of bases (NaOH and NH4OH) also catalyzes the reversible ring opening of GVL. While in the case of NaOH, the product is the sodium salt of 4-hydroxyvalerate, the reversible reaction of GVL, with NH4OH results in the formation of 4-hydroxyvaleric amide. The reversible ring opening of (S)-GVL in the presence of HCl or NaOH has no effect on the stability of the chiral center.  相似文献   

9.
A sol–gel based hybrid process was developed by manipulating different techniques in sol–gel process to synthesize γ-alumina and (CuO, CuO + ZnO) doped γ-alumina spherical particles. Catalysts having spherical geometry have an important advantage over powders or pellets which are impervious to fluids, when packed in a reactor. Boehmite sol was used as alumina precursor for synthesizing porous γ-alumina and doped materials. γ-alumina particles having 5 wt% CuO, 4 wt% CuO + 1 wt% ZnO, 3 wt% CuO + 2 wt% ZnO and 2 wt% CuO + 3 wt% ZnO were prepared by adding required amounts of Cu(NO3)2 and Zn(NO3)2 solutions prior to gelation of the sol. Methanol dehydration studies were carried out by employing these synthesized catalysts. Hundred percent conversion of methanol to dimethyl ether was observed with (4 wt% CuO + 1 wt% ZnO)-γ-alumina and (5 wt% CuO)-γ-alumina microspheres at 325 and 350 °C, respectively.  相似文献   

10.
The inhibition and adsorption behavior of 2-undecyl-1-sodium ethanoate-imidazoline salt (2M2) and thiourea (TU) on N80 mild steel in CO2-saturated 3 wt.% NaCl solutions was studied at 25?°C, pH 4, and 1 bar CO2 partial pressure using electrochemical methods. It was found that inhibition efficiency (η%) increased with increase in 2M2 concentration but decreased with increase in TU concentration with optimum η% value at 20 mg l?1 TU. The data suggest that the compounds functioned via a mixed-inhibitor mechanism. The inhibition process is attributed to the formation of an adsorbed film of 2M2 and TU via the inhibitors polycentric adsorption sites on the metal surface which protects the metal against corrosion. A synergistic effect was observed between TU and 2M2. Potential of unpolarizability, E u, was observed in the presence of 100 mg l?1 TU which was shifted positively in the presence of 2M2–100 mg l–1 TU blends, which suggests that the presence of 2M2 stabilized the adsorption of TU molecules on the surface of the metal. The adsorption characteristics of 2M2 were approximated by Langmuir adsorption isotherm.  相似文献   

11.
The host-guest complex between cucurbit[7]uril and 4-nitro-benzendiazonium is decomposed into a nitrobenzene/4-nitrophenol mixture in a high total yield in the presence of CuCl.  相似文献   

12.
In this study, various xanthene derivatives have prepared efficiently through a simple method using choline chloride/tin(II) chloride (ChCl·2SnCl2) deep eutectic solvent (DES), alone, or in the presence of Fe3O4/?-carrageenan/Zn(II) magnetic bionanocatalyst. In the employed procedure, 2-naphthol derivatives have mixed with aromatic or aliphatic aldehydes and the reactions have been completed in the presence of DES at 90 °C in 1.5 h. In addition, using DES/Fe3O4/?-carrageenan/Zn(II), the reaction time was reduced to 30 min. The employed DES has been recycled four times without important loss of its activity.  相似文献   

13.
Bare (unmodified) and crown ether (CE)-modified Fe3O4 magnetic nanoparticles (MNPs) were investigated for the rapid extraction of 226Ra from water samples. It involved synthesizing the MNPs, introducing them into the sample solutions, ultrasonicating and agitating the suspension, magnetically separating the nanoparticles from solution, and measuring the 226Ra content in the supernatant. Experimental parameters such as salt choice, salt concentration and pH were optimized to achieve maximum extraction of 226Ra onto the MNPs. 226Ra content was determined using a Hidex 300SL liquid scintillation counter with α/β separation capability, or a gamma spectrometric detection system. The bare Fe3O4 nanoparticles showed significant pH dependence for the extraction of 226Ra from an aqueous solution over a pH range of 2–10. They gave an extraction of 95 ± 1 and 98 ± 1 % at pH 9 in 0.1 M NaCl and 0.1 M NaClO4, respectively, whereas an extraction of 8–24 % was obtained, over the pH ranges from 2 to 5. The CE-modified MNPs yielded extraction efficiencies as high as 99 ± 1 % in the presence of 0.01 M picric acid at pH 4. This study demonstrates that the surface functionalization of Fe3O4 MNPs with suitable ligand modification can offer a selective mode of extraction for 226Ra in the presence of its daughter progenies.  相似文献   

14.
A mechanically stirred anaerobic sequencing batch reactor (5 L, 30 °C) containing granular biomass was used to treat the effluent of an industrial biodiesel production process with the purpose to produce methane. Process stability and efficiency were analyzed as a function of applied volumetric organic load (AVOL of 1,000 to 3,000 mgCOD/L), reactor feed time, and cycle length (8-h cycles with 10-min or 4-h feeding and 4-h cycles with 10-min or 2-h feeding). Batch operations (B) with 1,000 to 3,000 mgCOD/L involved 10-min feeding/discharge: (1) 1.0-L influent with 4-h cycle and (2) 2.0-L influent with 8-h cycle. Fed-batch operations (FB) with 1,000 to 3,000 mgCOD/L involved 10-min discharge and the following feeding: (1) 1.0-L influent in 2 h with 4-h cycle and (2) 2.0-L influent in 4 h with 8-h cycle. At 1,000 mgCOD/L (AVOL of 18 to 1.29 gCOD/L?day), kinetic parameter values were 1.03 and 0.92 h-1 at conditions B-1000-4 h and FB-1000-8/4 h, respectively. At both conditions, removal efficiency was 88 %, and cycle length could be reduced to 3 h (B-1000-4 h) and 5 h (FB-1000-8/4 h). At 2,000 mgCOD/L (AVOL of 2.38 to 2.52 gCOD/L?day), kinetic parameter values were 1.08 and 0.99 h-1 at conditions B-2000-4/2 h and FB-2000-8/4 h, respectively, and removal efficiencies were 83 and 81 %. Cycle length could be reduced to 3 h (B-2000-4/2 h) and 6 h (FB-2000-8/4 h). At 3,000 mgCOD/L (AVOL of 3.71 to 3.89 gCOD/L?day), conditions allowing stable operation were B-3000-4 h, FB-3000-8/4 h, and FB-3000-4/2 h. Stability could not be obtained at condition B-3000-8 h, and the best results were obtained at condition FB-3000-8/4 h. Specific methane production ranged from 41.1 to 93.7 NmLCH4/gCOD, demonstrating reactor application potential and operation flexibility.  相似文献   

15.
Highly efficient and selective conversion of different carbohydrates to 5-hydroxymethylfurfural (HMF) has been successfully performed with N-bromosuccinimide (NBS) as a promoter. In the presence of single NBS, a 64.2 % yield of HMF from fructose was obtained in N-methylpyrrolidone for 2 h. The effects of time, temperature and reaction media are discussed. It was concluded that the preliminary bromination of substrate could improve the generation of HMF compared to the direct dehydration process. Moreover, the HMF yield could be elevated to 79.6 and 82.3 % when FeCl3 and SnCl4 were used as the additives, respectively. Furthermore, the addition of CrCl3 facilitated the conversion pathway from glucose, sucrose, inulin, or cellulose to HMF. A 57.3, 68.2, 62.4, or 6.1 % yield of HMF was, respectively, obtained in the presence of CrCl3 and NBS under mild conditions, which will therefore generate a promising application strategy for biomass transformation.  相似文献   

16.
Enzymatic epoxidation of vegetable oils using a long chain fatty acid as an active oxygen carrier could produce a desirable epoxy oxygen group content (EOC); however, the acid value (AV) of final epoxidized oil is too high. The present study was to investigate the effect of different fatty acids with varying length of carbon chain on EOC and AV of the final epoxidized soybean oil (ESO); finding butyric acid was the choice of active oxygen carrier when hydrogen peroxide was used as an oxygen donor in the presence of lipase Novozyme 435. And in situ IR was used to monitor the epoxidation process, which revealed that the formation of perbutyric acid was the key step in the whole reaction. The epoxidation process was optimized as follows: molar ratio of butyric acid/C=C bonds of 0.19:1, 8% of immobilized lipase Novozyme 435 load (relative to the weight of soybean oil) and molar ratio of H2O2/C=C bonds of 3.5:1, reaction time of 4 h and reaction temperature of 45 °C. Under these conditions, ESO with a high EOC (7.62 ± 0.20%) and a lower AV value (8.53 ± 0.18 mgKOH/g) was obtained. The oxriane conversion degree was up to 97.94%.  相似文献   

17.
MnCo2O4 spinel nanoparticles (NPs) have been prepared using Aloe vera gel solution. The characterization of prepared spinel was performed applying Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron spectroscope, scanning electron microscope and dynamic light scattering. The results manifested that the prepared nanoparticles were mainly spherical plus minor agglomeration with average size distribution between 35 and 60 nm. The catalytic activity of the prepared nanoparticles upon thermal degradation of ammonium perchlorate (AP) was evaluated applying differential scanning calorimetry and thermogravimetry instruments. MnCo2O4 nanoparticles increased the released heat of AP from 450 to 1480 J g?1 and decreased the decomposition temperature from 420 to 293 °C. The kinetic parameters obtained from Kissinger methods showed that the activation energy of AP thermal decomposition in the presence of MnCo2O4 NPs considerably decreased. Also, a mechanism has been proposed in the presence of catalyst for the process of thermal decomposition of AP.  相似文献   

18.
The novel phosphorus-rich hydrothermal carbon spheres (HCSs–PO4) have been synthesized via one-step hydrothermal carbonization of glucose in the presence of phosphoric acid. The textural and surface chemistry properties were characterized using Boehm titrations, scanning electron microscopy and Fourier transform infrared spectrometer. The content of oxygen-containing functional groups on the surface of HCSs increased from 0.053 to 1.009 mmol g?1 by phosphate group modification. The adsorption ability of HCSs–PO4 has been explored for the removal of uranium from aqueous solutions. The adsorption kinetic data were best described by the pseudo-second-order equation. Adsorption process could be well defined by the Langmuir isotherm, the adsorption capacity of HCSs increased from 80.00 to 285.70 mg g?1 after phosphate group modification. And thermodynamic parameters indicated the adsorption process was feasible,endothermic and spontaneous. Selective adsorption studies showed that the HCSs–PO4 could selectively remove U(VI), and the selectivity coefficients had been improved in the presence of co-existing ions, Na(I), Ni(II), Sr(II), Mn(II), Mg(II) and Zn(II). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 12.0 g HCSs–PO4.  相似文献   

19.
Wheat straw is one of the main agricultural residues of interest for bioethanol production. This work examines conversion of steam-pretreated wheat straw (using SO2 as a catalyst) in a hybrid process consisting of a short enzymatic prehydrolysis step and a subsequent simultaneous saccharification and fermentation (SSF) step with a xylose-fermenting strain of Saccharomyces cerevisiae. A successful process requires a balanced design of reaction time and temperature in the prehydrolysis step and yeast inoculum size and temperature in the SSF step. The pretreated material obtained after steam pretreatment at 210 °C for 5 min using 2.5 % SO2 (based on moisture content) showed a very good enzymatic digestibility at 45 °C but clearly lower at 30 °C. Furthermore, the pretreatment liquid was found to be rather inhibitory to the yeast, partly due to a furfural content of more than 3 g/L. The effect of varying the yeast inoculum size in this medium was assessed, and at a yeast inoculum size of 4 g/L, a complete conversion of glucose and a 90 % conversion of xylose were obtained within 50 h. An ethanol yield (based on the glucan and xylan in the pretreated material) of 0.39 g/g was achieved for a process with this yeast inoculum size in a hybrid process (10 % water-insoluble solid (WIS)) with 4 h prehydrolysis time and a total process time of 96 h. The obtained xylose conversion was 95 %. A longer prehydrolysis time or a lower yeast inoculum size resulted in incomplete xylose conversion.  相似文献   

20.
Metal Active Gas (MAG) welding in presence of Argon and CO2 mixture as shielding gas is a largely developed process allowing the transfer of the liquid metal from the consumable wire anode to the workpiece according to various modes (short-arc, globular, spray-arc). The CO2 presence in the shielding gas leads to the formation of an oxide layer, or gangue, wrapping the droplet, limiting the access to the spray-mode transfer, taking into account the low conductivity and the high viscosity of this layer. Several electrodes of various compositions have been tested thanks to Flux Cored Arc Welding, to limit the gangue formation or its negative contribution, based on Ti, La, Zr and alkali metals addition or reduction in silicon content. The results are interpreted considering the metal transfer mode for a given current intensity (330 and 410 A), with various CO2 concentrations in the shielding gas. Finally, the role of the gangue, compared to the other factors governing the droplet detachment, is discussed. A decrease in silicon content limits significantly the gangue formation and gives access to spray arc transfer up to 30 vol.% of CO2 at 330 A. Titanium addition leads to the same results. The tests in presence of zirconium proved the conductivity improvement of the gangue. The addition of alkali allows to stabilize the spray arc up to the noteworthy value of 60 vol.% of CO2 at 330 A, supporting the hypothesis of a strong influence of viscosity on droplets detachment in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号