首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and reactions of methyl 2-[3-(trifluoromethyl)phenyl]-4H-furo[3,2-b]pyrrole-5-carboxylate (1a) are described. Upon reaction with methyl iodide, benzyl chloride, or acetic anhydride, this compound gave N-substituted products 1b-d. By hydrolysis of compounds 1a-c, the corresponding acids 2a-c were formed, or by reaction with hydrazine-hydrate, the corresponding carbohydrazides 3a-c were formed. By heating 2-[3-(trifluoromethyl)phenly]-4H-furo[3,2-b]pyrrole-5-carboxylic acid (2a) in acetic anhydride, 4-acetyl-2-[3-(trifluoromethyl)phenyl]furo[3,2-b]pyrrole (4) was formed. By hydrolysis of 4, 2-[3-(trifluoromethyl)phenyl]-4H-furo[3,2-b]pyrrole (5a) was formed, and reactions with methyl iodide or benzyl chloride gave N-substituted products 5b-c. The reaction of 4 with dimethyl butynedioate gave substituted benzo[b]furan 6. Compound 3a reacted with triethyl orthoesters giving 7a-c, which afforded with phosphorus (V) sulphide the corresponding thiones 8a-c. The thiones 8a-c reacted with hydrazine hydrate to form hydrazine derivatives 9a-c. The reaction of triethyl orthoformiate with compounds 9a-c led to furo[2′,3′: 4,5]pyrrolo[1,2-d][1,2,4]triazolo[3,4-f][1,2,4]triazines 10a-c. Hydrazones 11a-c were formed from 3a-c and 5-[3-(trifluoromethyl)phenyl]furan-2-carboxaldehyde. The effect of microwave irradiation on some condensation reactions was compared with “classical” conditions. The results showed that microwave irradiation shortens the reaction time while affording comparable yields.  相似文献   

2.
The conventional route to alkoxyamine hydrochloride derivatives is by reaction of alkyl bromides with N-hydroxyphthalimide or N-hydroxysuccinimide followed by addition of hydrazine and HCl. Transformation of an alkyl bromide to the corresponding alkoxyamine hydrochloride can be accomplished more rapidly in good yields without using hazardous hydrazine by reaction of (Boc)2NOH (N,N′-di-tert-butoxycarbonylhydroxylamine) and alkyl bromide followed by addition of HCl. Alkoxyamine hydrochlorides are powerful reagents in organic synthesis that can be used to synthesize alkoxyimino derivatives after condensation with a ketone or aldehyde.  相似文献   

3.
New compounds of trimethoprim heterocyclic derivatives were synthesized. These compounds were synthesized through the condensation reaction between trimethoprim with bromoacetic acid to yield compound 1. Several Schiff bases 27 have been synthesized by the condensation different aromatic aldehydes with compound 1. Compound 8 were formed from the reaction of sodium nitrite and acetyl acetone in presence of conc. hydrogen chloride to obtain the hydrazono derivative; then, Cyclocondensation of compound 8 with hydrazine hydrate, phenyl hydrazine and dinitrophenyl hydrazine respectively to yield compounds 911 in ethanol affording the pyrazoline derivatives. This work involves the synthesis of some 1,2,3-Triazoles derived from compound 1 by the action of sodium azide on the diazonium chloride salt to yield 5-azido-8-(3,4,5-trimethoxybenzyl)imidazo[1,2-c]pyrimidin-3(2H)-one 12. Finally, by reaction of 12 with acetyl acetone and ethyacetoacetate; respectively in sodium ethoxide/ethanol as a solvent to form compounds 13, 14. The structures of the compounds 114 were characterized by elemental analysis, spectral data and antimicrobial evaluation of the some newly synthesized compounds and found that the synthesized compounds are active against tested Gram positive and Gram negative bacteria like Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Proteus.  相似文献   

4.
The 1H‐pyrazole‐3‐carboxylic acid 2 , obtained from the furan‐2,3‐dione 1 and N‐Benzylidene‐N'‐(3‐nitrophenyl) hydrazine, was converted via reactions of its acid chloride 3 with various alcohols or N‐nucleo‐philes into the corresponding ester or amide derivatives 4 or 5 , respectively. Nitrile 6 and anilino‐pyrazole acid 7 derivatives of 2 were also obtained by dehydration of 5a in a mixture of SOCl2 with DMF and reduction of 2 with sodium polysulphide, respectively. While cyclocondensation reactions of 2 or 7 with phenyl hydrazine or hydrazine hydrate and 6 with only anhydrous hydrazine lead to derivatives of pyrazolo[3,4‐d]‐pyridazinone 8 and pyrazolo[3,4‐d]pyridazine amine 9 , respectivel. The reaction of 2 with 2‐hydrazinopyri‐dine provided hydrazono‐pyrazole acid derivative 10 , which was decarboxylated to give hydrazono‐pyra‐zole derivative 11 . Pyrazolo[4,3‐d]oxazinone 12 and 2‐quinolyl pyrazolo[3,4‐d]pyridazine 13 derivatives were also prepared by cyclocondensation reactions of 2 with hydroxylamine hydrochloride and 7 with acetaldehyde, respectively.  相似文献   

5.
A series of novel triazolothione, thiadiazole, triazole-functionalized furo/thieno[2,3-b]pyridine derivatives 9a–l, respectively, were prepared starting from 2 (1H) pyridone 3 through selective O/S-alkylation followed by Thorpe–Ziegler cyclization to form furo/thieno[2,3-b]pyridine derivatives 6. Compounds 6 on reaction with hydrazine hydrate resulted carbohydrazide derivatives 7 and further reacted with diverse substituted phenyl isothiocyanates to form phenyl hydrazine carbothiamide derivatives 8. Each compound 8 is independently reacted in presence of NaOH, H2SO4, and N2H4.H2O to form triazolothione, thiadiazole, triazole-functionalized furo/thieno[2,3-b]pyridine derivatives 9a–l, respectively. All the products 9a–l were screened against Gram +ve, Gram –ve bacteria and fungal strains. Compounds 9c–h showed high activity against Bacillus subtilis microbial-type culture collection (MTCC) 121 at <8.0 micromolar concentration. Promising compounds further screened for minimum bactericidal concentration against B. subtilis MTCC 121 using ciprofloxacin as standard and found to show very good activity. These compounds also screened for biofilm inhibition activity against B. subtilis MTCC 121 using erythromycin as standard and confirmed the high activity.  相似文献   

6.
Abstract

Some new 3,4,5-trisubstituted 1,2,4-triazole derivatives were synthesized and studied for their antimicrobial activity. The lead compounds were obtained starting from 8-hydroxyquinoline and ethyl 2-chloroacetate. The obtained ester compound (1) first reacted with hydrazine hydrate (2) then with phenyl isothiocyanate (3). Ring closure by KOH led to 3-mercapto-1,2,4-triazole derivative (4). Lastly, it reacted with 2-chloro-N-(substituted (benzo)/thiazole)acetamide derivatives to obtain the final compounds (5a–j). The structural elucidation of the compounds was performed by 1H NMR and 13C NMR spectroscopy and high resolution mass spectrometry techniques and elemental analysis. The synthesized compounds were investigated for their antimicrobial activities against seven bacteria and four fungi. As a result of the activity studies, it was observed that compounds N-(6-nitrobenzothiazol-2-yl)-2-[[4-phenyl-5-((quinolin-8-yloxy)methyl)-4H-1,2,4-triazol-3-yl]thio]acetamide (5a) and N-(6-fluorobenzothiazol-2-yl)-2-[[4-phenyl-5-((quinolin-8-yloxy)methyl)-4H-1,2,4-triazol-3-yl]thio]acetamide (5d) were the most active molecules. Also, the antifungal activity of the compounds was found to be higher than their antibacterial activity although lower than the standard drug’s potential. Additionally, the physicochemical properties of the compounds were calculated which were evaluated to be at a suitable range for oral administration.  相似文献   

7.
Chalcones were synthesized by a base catalyzed Claisen-Schmidt condensation reaction. Bromination of chalcones afforded the dibromo derivatives. Monobromo derivatives could be obtained by treating the corresponding dibromochalcones with dry benzene in the presence of triethylamine. Pyrazole derivatives were obtained by refluxing of dibromochalcones with phenylhydrazine or 2,4-dinitrophenylhydrazine in dry pyridine. Chalcones were treated with hydrazine hydrate or phenyl hydrazine in ethanol to afford Δ 2-pyrazolines and N-phenyl-Δ 2-pyrazolines. Condensation of chalcones with hydroxylamine hydrochloride or thiourea in ethanolic sodium hydroxide solution gave 4,5-dihydroisoxazoles and 5,6-dihydropyrimidine-2-(1H)-thiones. The prepared compounds were tested for antimicrobial activity against four different bacterial species displaying different degrees of antibacterial activities or inhibitory actions.  相似文献   

8.
Summary. Chalcones were synthesized by a base catalyzed Claisen-Schmidt condensation reaction. Bromination of chalcones afforded the dibromo derivatives. Monobromo derivatives could be obtained by treating the corresponding dibromochalcones with dry benzene in the presence of triethylamine. Pyrazole derivatives were obtained by refluxing of dibromochalcones with phenylhydrazine or 2,4-dinitrophenylhydrazine in dry pyridine. Chalcones were treated with hydrazine hydrate or phenyl hydrazine in ethanol to afford Δ 2-pyrazolines and N-phenyl-Δ 2-pyrazolines. Condensation of chalcones with hydroxylamine hydrochloride or thiourea in ethanolic sodium hydroxide solution gave 4,5-dihydroisoxazoles and 5,6-dihydropyrimidine-2-(1H)-thiones. The prepared compounds were tested for antimicrobial activity against four different bacterial species displaying different degrees of antibacterial activities or inhibitory actions.  相似文献   

9.
New oxamides, derivatives of D-glucosamine and aliphatic or aromatic amines were prepared by acylation of methyl 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-α- or -β-D-glucopyranoside (1c or 1d) with oxalyl chloride, followed by reaction with amine. The reaction was assumed to proceed by the intermediate of N-carbomethoxy N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α or β-D-glucopyranosid-2-yl) oxamic acid chloride which reacted with amines, and afforded N-acetyl, N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α- or -β-D-glucopyranosid-2-yl), N′-alkyl or aryloxamide (5–7), and N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-α- or -β-D-glucopyranosid-2-yl), N′-alkyl or aryloxamide (8–13).  相似文献   

10.
Reaction of o-nitrobenzylideneacetylacetone ( 1a ) with hydrazine dihydrochloride in methanol gave 4-(α-methoxy-o-nitrobenzyl)-3,5-dimethylpyrazole hydrochloride ( 4a ), whose structure was unambigously confirmed by an X-ray crystallographic analysis, via 4-(o-nitrobenzylidene)-3,5-dimethylisopyrazole ( 2a ). Compound 2a was synthesized by condensation of 1a with hydrazine dihydrochloride in acetonitrile. Analogously the corresponding o-chloro derivatives ( 2b, 4b ) were obtained. These were converted to N-methyl ( 6b ) and N-acetyl ( 7a,b ) derivatives and the behaviors on bromination and pyrolysis were investigated.  相似文献   

11.
5-(4,6-Diphenyl-2-pyrimidinyl)-1,3,4-oxadiazole-2-thione reacted with haloalkanes or their derivatives containing side chain oxo group to give S-alkylated compounds. Aminomethylation and acylation of the thione yielded N(3)-derivatives. Treatment of the title compound with hydrazine hydrate in butanol resulted in 4-amino-5-(4,6-diphenyl-2-pyrimidinyl)-1,2,4-triazole-3-thione via a recyclization reaction. Reaction of the title compound with hydrazine hydrate or phenylhydrazine in dioxane led to formation of the corresponding thiocarbohydrazides. The latter in the presence of a base were cyclized to 4-amino-1,2,4-triazole-3-thiones.  相似文献   

12.

Nicotinic acid esters 3a–c were prepared by the reaction of pyridine-2(1H)-thione derivative 1 with α-halo-reagents 2a–c. Compounds 3a–c underwent cyclization to the corresponding thieno[2, 3-b]pyridines 4a–c via boiling in ethanol/piperidine solution. Compounds 4a–c condensed with dimethylformamide-dimethylacetal (DMF-DMA) to afford 3-{[(N,N-dimethylamino)methylene]amino}thieno[2, 3-b]- pyridine derivatives 6a–c. Moreover, compounds 4a–c and 6a–c reacted with different reagents and afforded the pyrido[3′,2′:4, 5]thieno[3, 2-d]pyrimidine derivatives 10a–d, 11a–c, 12a,b, 14a,b, 17, and 19. In addition, pyrazolo[3, 4-b]pyridine derivative 20 (formed via the reaction of 1 with hydrazine hydrate) reacted with ethylisothiocyanate yielded the thiourea derivative 21. Compound 21 reacted with α-halocarbonyl compounds to give the 3-[(3H-thiazol-2-ylidene)amino]-1H-pyrazolo[3, 4-b]pyridine derivatives 23a–c, 25, and 27a,b.  相似文献   

13.
2-Cyano-N-(tetrahydrocarbazole)acetamide (1) was utilized for the synthesis of several new arylazocarbazole derivatives (2a–e). Compound (1) reacted with phenyl isothiocyanate to yield the corresponding non-isolable intermediate (3), which gave, upon treatment with dilute hydrochloric acid, thiocarbamoyl derivative (4). Compound (3) reacted with chloroacetone, chloroacetic acid, chloroacetyl chloride, ethyl bromoacetate, and phenacyl bromide to afford thiazolone derivatives (6), (8), and (10), respectively. Compound (1) was heated in the presence of pyridine and/or hydrazine hydrate and/or isatine to give the corresponding tetrahydrocarbazole derivatives (13), (14), and (18), respectively.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

14.
ABSTRACT

-The reaction of 3-(1-adamantyl)-4-methyl-1,2,4-triazole-5-thiol 1 with certain 2-aminoethyl chlorides in alkaline medium yielded a separable mixture of the S-(2-aminoethyl) derivatives 2 and the N-(2-aminoethyl) derivatives 3. Meanwhile, alkylation of 2-(1-adamantyl)-1,3,4-oxadiazole-5-thiol 4 with 2-aminoethyl chlorides under the same conditions yielded only the S-alkyl derivatives 5. Interaction of 4 with primary or secondary amines and formaldehyde solution yielded the corresponding N-aminomethyl derivatives in high yields.  相似文献   

15.
We prepared a thieno[2,3-d]pyrimidine compound fused with a thiazolo ring to produce biologicaly active compounds. In a one-step reaction, 2-arylmethylene derivative (3) was prepared via the reaction of a ternary mixture of 2-thioxo-1,2,3,4-tetrahydrocyclohepteno[4,5]thieno[2,3-d]pyrimi-dine-4-one (2), cloroacetic acid, and a proper aldehyde. The reaction of 2 with 3-chloropent-2,4-dione in ethanolic potassium hydroxide yielded the S-acetylacetone derivative 4e. The latter compound reacted with hydrazine hydrate and phenyl hydrazine to give 2-pyrazolthio derivatives 8a,b, respectively. Compound 4e also underwent cyclization on boiling with acetic anhydride/pyridine solution to form 2-acetyl-3-methyl thiazolo[3,2-a]cyclohepteno[4,5]thieno[2,3-d] pyrimidine-5-one (9). To support the structure 9, it gave a characteristic reaction for the 2-acetyl group. The 2-methylthio derivatives 4a underwent further alkylation at N3 to give 6a,b. The purpose of the synthesis of thienopyrimidine derivatives is due to high biological activities. The 4-oxo-thienopyrimidine derivatives acted as inhibitors of adenosine kinase, platelet aggregation, antilukemia, and anticancer activities.  相似文献   

16.
Some novel pyrazolo[1,5-α]pyrimidines 5a-f, 10a,b, 1,2,4-triazolo[1.5-α]-pyrimidine (12), and pyrimido[1,2-α]benzimidazole 18 could be synthesized by reacting 3-(4-chlorophenyl)-2-(N,N-dimethylamino)methylene-3-oxopropanenitrile (2) with 5-amino-3- and/or 4-substituted-1H-pyrazoles 3a-f and 9a,b, 3-amino-1,2,4-triazole (11) and 2-aminobenzimidazole (14), respectively. The reaction of 2 with 1H-benzimidazol-2-ylacetonitrile (19) afforded the pyrido[1,2-α]benzimidazole 20. On the other hand, the reaction of 2 with guanidine, hydrazine, and phenyl hydrazine afforded the pyrimidine 24, and the pyrazoles 27, 28, respectively. However, the reaction of 2 with hydroxyl amine did not afford the isoxazole 32.  相似文献   

17.
Although the reaction of caffeine with hydrogen peroxide/hydrochloric acid or nitric acid and then with ammonia has been known to give a purple coloration (Murexide reaction), the use of hydrazine instead of ammonia is found to provide no purple coloration. The reaction of caffeine with hydrogen peroxide/hydrochloric acid and then with hydrazine hydrate afforded a yellow reaction mixture, from which 4-methyl-6-(N-methylcarbamoyl)-3,5-dioxo-2,3,4,5-tetrahydrotriazine 9 , oxalyl hydrazide 10 and hydroxylamine hydrochloride were isolated. The reaction of caffeine with nitric acid and then with hydrazine hydrate furnished a yellow reaction mixture, from which 8-amino-1,3,7-trimethyl-2,6-dioxo-1H,3H,7H-xanthine 11, 9 and hydroxylamine nitrate were isolated. Compound 9 was clarified to be produced from 3-hydroxy-4,6-dimethyloxazolo[4,5-d]pyrimidine-2,5,7(3H,4H,6H)-trione 3 and 1,3-dimethylalloxan 7 by the ring transformation with hydrazine.  相似文献   

18.
EPR spectroscopy was used to assess the radicals produced upon basic decomposition of N,N-bis-(3-chloro-1,4-naphthoquinon-2-yl) amine (BClNQA). Three radicals have been trapped and identified: N-bis(3-chloro-1,4-naphthoquinone) hydrazine radical (6), 2-hydroxy-3-chloro-1,4-naphthoquinone anion radical (9) and 2-amino-3-chloro-1,4-naphthoquinone radical (8). The probable reaction mechanism, the structure of intermediates as well as the reaction profile are discussed.  相似文献   

19.
The reaction of N‐(3‐carbethoxy‐4,5,6,7‐tetrahydrobenzo[b]thien‐2‐yl)‐N′‐phenylthiourea ( 1 ) with hydrazine hydrate in 1‐butanol afforded a mixture of compounds 2, 3 and 4 . Treatment of 3 and 4 with nitrous acid gave 6 and 8 respectively, while reactions of 3 with acetylacetone gave 7 . Synthesis of tetracyclic compounds 9a‐f and 11 from the reactions of 3 with ethyl orthoformate or appropriate acids, acid chloride, carbon disulphide and/or ethyl chloroformate. Also its reaction with isothiocyanate derivatives gave the corresponding thiosemicarbzides 12a,b which on, refluxing in alcoholic KOH gave the unexpected tetracyclic products 14a,b . Similarly the tetracyclic compounds 16a‐e and 19 were obtained by cyclization of 4 and 18 respectively.  相似文献   

20.
2-Phenyl-1, 2, 3-triazole-4-formylhydrazine (2) was prepared by hydrazinolysis of the corresponding ester 1. Reaction of 2 with CS2/KOH gave the oxadiazole derivatives (3) which via Mannich reaction with different dialkyl amines furnished 3-N, N-dialkyl derivatives (4a–c). Also, condensation of 2 with appropriate aromatic acid in POCI3 yielded oxadiazole derivatives (5a–c), or with aldehydes and ketones afforded hydrazones (6a–c). Cyclization of (6a–c) with acetic anhydride gave the desired dihydroxadiazole derivatives (7a–c). On the other hand, reaction of dithiocarbazate (8) with hydrazine hydrate gave the corresponding triazole derivative (9) which on treatment with carboxylic acids in refluxing POCI3 yielded s-triazole [3, 4–b]-1, 3, 4-thiadiazole derivatives (10a–b). The structures of all the above compounds were confirmed by means of IR, 1H NMR, MS and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号