首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

2.
Abstract

Various spirooxindoles (7a–c, 8a–c, 9a–c, and 10a–c) were efficiently synthesized using deep eutectic solvent ZnCl2+urea and well characterized using IR, 1H NMR, and 13C NMR spectroscopic techniques. The biological screening results showed that the compound 9a exhibited potent anticancer activity against MCF7 and HeLa cell lines with IC50 values 6.47?±?0.01 and 9.14?±?0.32?µM, respectively. The compound 7c exhibited potent activity against the HeLa cell line with IC50 value 6.81?±?0.01?µM. The compound 9a exhibited a potent antioxidant activity with IC50 value 7.34?±?0.17?µM. The comparative molecular docking study against the cancer proteins EGFR and HER2 revealed that the EGFR was the best target protein receptor for the target compounds. Among all the compounds, the compound 9a exhibited the least binding energy ?10.72?kcal/mol against the protein EGFR (PDB ID: 4HJO).  相似文献   

3.
Derivatives (115) of steroidal and indole class were synthesized using different strategies. These compounds were characterized by 1H NMR spectroscopy and EI-MS, respectively. The synthetic derivatives were examined for their cytotoxic effects on human adenocarcinoma cells (HCT-116) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphometric analysis. The cytotoxic effects of all the compounds were observed after 48 h treatment and it was found that out of fifteen, four compounds 1, 2, 3, and 14 showed inhibitory action on the cancer cells. We have calculated the IC50 values for compounds 1, 2, 3, and 14 which were 22.50 µg/mL, 55.65 µg/mL, 21.35 µg/mL and 58.50 µg/mL, respectively. The compounds 3 (IC50 = 21.35 µg/mL) and 1 (IC50 = 22.50 µg/mL) showed highest inhibitory activities as compared to compounds 2 (IC50 = 55.65 µg/mL) and 14 (IC50 = 58.50 µg/mL). These results suggested that steroidal thiazole and indole derivatives are potent lead molecules having strong anti-cancer proliferative capabilities.  相似文献   

4.
Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).  相似文献   

5.
Abstract

Two triterpene saponins (IPS-1, IPS-2) for the first time were isolated from the roots of Impatiens parviflora DC. (Balsaminaceae). Their anti-inflammatory activity was evaluated by means of two in vitro models: anti-hyaluronidase and anti-denaturation assays. Both saponins were shown to be potent hyaluronidase inhibitors that affect the enzyme in a dose-dependent manner. The anti-hyaluronidase effect of IPS-2 (IC50?=?286.7?µg/mL) was higher than that of the reference drug: escin (IC50?=?303.93?µg/mL). Both saponins protected bovine serum albumin from heat-induced denaturation in a dose-dependent manner. IPS-1 demonstrated higher anti-denaturation effect (IC50?=?86.7?µg/ml) than IPS-2 (IC50?=?109.76?µg/mL) or the standard drug: acetylsalicylic acid (IC50?=?262.22?µg/mL). In conclusion, potent activity of IPS-1, IPS-2 in both in vitro assays shows that saponins from I. parviflora have anti-inflammatory activity. The obtained results allow to suggest that such compounds may be beneficial in inflammatory conditions, especially associated with excessive degradation of hyaluronic acid.  相似文献   

6.
A new series of tri-substituted pyrazole derivatives were designed as anti-cancer agents and synthesized, starting with the formylation of semicarbazone via the Vilsmeier–Haack reaction to give 3-(4-bromophenyl)-1H-pyrazole-4-carbaldehyde I which was the precursor of compounds 19. The new chemical entities were screened for their anti-cancer activity on various human cancer cell lines, namely: hepatocellular carcinoma HepG2, breast cancer MCF-7, lung carcinoma A549 and prostatic cancer PC3. Most of the synthesized compounds showed remarkable activity on the tested cell lines, while compound 2 had the highest potency against the HepG2 cell line with an IC50 of 9.13 µM compared with doxorubicin (IC50 = 34.24 µM), the reference standard used in this study, and compound 7 was the most active on the rest of the three cell lines; MCF-7, A549 and PC3 (IC50 = 16.52, 6.52 and 9.13 µM, respectively) relative to IC50 = 20.85, 5.93 and 38.02 µM of the standard. Thus, some of the synthesized tri-substituted pyrazole derivatives, specially 2 and 7, have the potential to be developed into potent anticancer agents.  相似文献   

7.
A new series of 6,8-dibromo-2-(4-chlorophenyl)quinazolin-4(3H)-one derivatives VI–XIII were synthesized. Their chemical structures were confirmed by spectral and elemental analysis. The cytotoxic effect of the newly synthesized compounds was tested in vitro against human breast cancer cell line (MCF-7). Most of the tested compounds have shown promising cytotoxic activity. Compounds X and XIIIb exerted a powerful cytotoxic effect against MCF-7 with a very low IC50 (0.0015 and 0.0047 µmol/ml), while compounds VI, VII, VIII, XIIb, XI, XIIIc and IX exerted a moderate cytotoxic effect (IC50 0.01523, 0.0213, 0.031, 0.0478, 0.049, 0.068 and 0.079 µmol/ml respectively), compared to doxorubicin (0.0025 µmol/ml). Exploring their apoptotic effect; interestingly,all compounds activated apoptotic cascade in MCF-7. Compounds VI, XIIIb, XIIb, XI, XIIa, VII, V and VIII showed potent effect even much more than doxorubicin by 12.87–5.91 folds, while compounds XIIIc, IX, XIIIa, XIIc and X showed moderate increase in CASP3 activity by 4.96–3.22 folds relative to untreated cells more or less similar to doxorubicin (5.57 folds).  相似文献   

8.
A series of 28 novel naproxen derivatives (4a-f, 5a-f, 6a-d, 7a-f, and 8a-f) have been designed, synthesized, and characterized. The synthesized derivatives were assessed as dual inhibitors for 15-lipoxygenase (LOX) and α-glucosidase enzymes and checked for cytotoxicity and ADME studies. The inhibitory potential of naproxen derivatives for 15- LOX was checked through two different methods, the UV absorbance method and the Chemiluminescence method. The biological activities result revealed that through the UV absorbance method, compound 4f (IC50 21.31 ± 0.32 µM) was found potent among the series followed by compounds 4e (IC50 36.53 ± 0.51 µM) and 4d (IC50 49.62 ± 0.12 µM) against standard drug baicalein (IC50 22.46 ± 1.32 µM) and quercetin (IC50 2.34 ± 0.35 µM), while through chemiluminescence method tested compounds showed significant 15-LOX inhibition at the range of IC50 1.13 ± 0.62 µM ?123.47 ± 0.37 µM. Among these compounds, 4e (IC50 1.13 ± 0.62 µM), 5b (IC50 1.19 ± 0.43 µM), 8c (IC50 1.23 ± 0.35 µM) were found most potent inhibitors against quercetin (IC50 4.86 ± 0.14 µM), and baicalein (IC50 2.24 ± 0.13 µM). The chemiluminescence method was found more sensitive than the UV method to identify 15-LOX inhibitors. Interestingly all synthesized compounds showed significant α-glucosidase inhibitory activity (IC50 1.0 ± 1.13 µM ? 367.2 ± 1.23 µM) even better than the standard drug acarbose (IC50 375.82 ± 1.76 µM), while compound 6c (IC50 1.0 ± 1.13 µM) and 7c (IC50 1.1 ± 1.17 µM) were found most potent compounds among the series even many folds better than the standard drug. The cell viability results showed that all compounds were less toxic, maintained cellular viability at the range of 99.8 ± 1.3% to 63.7 ± 1.5%. ADME and molecular docking studies supported drug-likeness and binding interactions of compounds with the targeted enzymes.  相似文献   

9.
Ficus deltoidea leaves extract are known to have good therapeutic properties such as antioxidant, anti-inflammatory and anti-diabetic. We showed that 50% ethanol-water extract of F. deltoidea leaves and its pungent compounds vitexin and isovitexin exhibited significant (p < 0.05) α-amylase inhibition with IC50 (vitexin: 4.6 μM [0.02 μg/mL]; isovitexin: 0.06 μg/mL [13.8 μM] and DPPH scavenging with IC50 (vitexin: 92.5 μM [0.4 μg/mL]; isovitexin: 0.5 μg/mL [115.4 μM]). Additionally, molecular docking analysis confirmed that vitexin has a higher binding affinity (-7.54 kcal/mol) towards α-amylase compared to isovitexin (?5.61 kcal/mol). On the other hand, the molecular dynamics findings showed that vitexin-α-amylase complex is more stable during the simulation of 20 ns when compared to the isovitexin-α-amylase complex. Our results suggest that vitexin is more potent and stable against α-amylase enzyme, thus it could develop as a therapeutic drug for the treatment of diabetes.  相似文献   

10.
This work expands the phytochemical composition knowledge of Acanthus mollis and evaluates antioxidant and anti-inflammatory activities which could be related with its traditional uses. Extracts from leaves, obtained by sequential extraction, were screened using TLC and HPLC-PDA. The ethanol extract was the most active on DPPH assay (IC50 = 20.50 μg/mL) and inhibited nitric oxide (NO) production in RAW 264.7 macrophages (IC50 = 48.31 μg/mL). Significant amounts of cyclic hydroxamic and phenolic acids derivatives were detected. A lower antioxidant effect was verified for a fraction enriched with DIBOA derivatives (IC50 = 163.02 μg/mL), suggesting a higher contribution of phenolic compounds for this activity in ethanol extract. However, this fraction exhibited a higher inhibition of NO production (IC50 = 32.32 μg/mL), with absence of cytotoxicity. These results support the ethnomedical uses of this plant for diseases based on inflammatory processes. To our knowledge, it is the first report to the anti-inflammatory activity for DIBOA derivatives.  相似文献   

11.
SHP2 is a new promising target for anti-cancer drug discovery. A series of novel phenylhydrazonopyrazolone derivatives was synthesized by a more convenient method, and their chemical structures were characterized by various spectroscopic methods. The inhibitory effects of these compounds on SHP2 enzyme and SHP2-dependent cancer cell H1975 were evaluated. The compound 11f with IC50 value of 3.38 μmol/L exhibited more potent antitumor activity against H1975 cell than GS-493 (IC50?=?20.92 μmol/L). Molecular dynamics simulation of compound 11f displayed a possible mode of interaction between this compound and SHP2 enzyme.  相似文献   

12.
This study was designed to evaluate the isolated flavonoids (chrysin 1, and umbelliferone 2) from Potentilla evestita for cytotoxic, antitumour-promoting and inhibition of protein denaturation activities. The results showed marked cytotoxic effect of compounds 1 and 2 in brine shrimp cytotoxic assay at various concentrations with LD50 of 34.5 and 31.8 mg/mL, respectively. In Epstein–Barr-virus early antigen activation assay, both compounds 1 and 2 illustrated significant antitumour-promoting effect with IC50 values of 462 and 308 mol ratio/32 pmol TPA, respectively. The cytotoxic and antitumour-promoting effects of compounds were strongly supported by inhibition of protein denaturation activity with IC50 of 119 and 112 μg/mL, respectively. In conclusion, both compounds possess strong cytotoxic, antitumour-promoting and inhibition of protein denaturation activities.  相似文献   

13.
α-Glucosidase inhibitors have received much attention due to their important use in treating diabetes mellitus. Although some synthetic α-glucosidase inhibitors have been available for a long time, they often cause various unexpected side effects. Thus, the present study was aimed at finding a safe, natural source of α-glucosidase inhibitors. Twenty-six samples of 22 medicinal plants were collected in the Dak Lak province of Vietnam and evaluated for α-glucosidase inhibitory activity. Trunk bark extract from Euonymus laxiflorus Champ (ELC extract) was selected as the best α-glucosidase inhibitor with the smallest IC50 = 0.36 mg/mL against rat-derived α-glucosidase. This extract had a stronger inhibitory activity against α-glucosidase from Saccharomyces cerevisiae (IC50 = 1.32 µg/mL) and Bacillus stearothermophilus (IC50 = 5.15 µg/mL). The potential inhibition against some other enzymes were tested, and the results showed that the ELC extract did not inhibit fungal cellulase but strongly inhibited porcine α-amylase (IC50 = 6.7 µg/mL). The ELC extract also inhibited the proteases papain and bromelain, with IC50 = 339 µg/mL and IC50 = 226 µg/mL, respectively. The thermal and pH stabilities of the ELC extract were also investigated.  相似文献   

14.
Some promising 4-thiazolone derivatives as lipoxygenase inhibitors were designed, synthesized, characterized and evaluated for anti-inflammatory activity and respective ulcerogenic liabilities. Compounds (1b, 1e, 3b, and 3e) exhibited considerable in vivo anti-inflammatory activity (57.61, 79.35, 75.00, and 79.35%) against carrageenan-induced rat paw edema model, whereas compounds (1e, 3b, and 3e) were found active against the arachidonic acid-induced paw edema model (55.38, 55.38, and 58.46%). The most potent compound (3e) exhibited lesser ulcerogenic liability compared to the standard diclofenac and zileuton. Further, the promising compounds (1e and 3e) were evaluated for in vitro lipoxygenase (LOX; IC50?=?12.98 µM and IC50?=?12.67 µM) and cyclooxygenase (COX) inhibition assay (COX-1; IC50?>?50 µM and, COX-2; IC50?>?50 µM). The enzyme kinetics of compound 3e was evaluated against LOX enzyme and supported by in silico molecular docking and molecular dynamics simulations studies. Overall, the results substantiated that 5-benzylidene-2-phenyl-4-thiazolones are promising pharmacophore for anti-inflammatory activity.  相似文献   

15.
Medicinal plants from Chad grow under special climatic conditions in between the equatorial forest of Central Africa and the desert of North Africa and are understudied. Three medicinal plants from Chad (T. diversifolia, P. Biglobosa and C. Febrifuga) were evaluated for their phenolic composition, antioxidant and enzyme inhibition activities. The total phenolic composition varied from 203.19 ± 0.58 mg GAE/g DW in the ethyl acetate extract of P. biglobosa, to 56.41 ± 0.89 mg GAE/g DW in the methanol extract of C. febrifuga while the total flavonoid content varied from 51.85 ± 0.91 mg QE/g DW in the methanol extract of P. biglobosa to 08.56 ± 0.25 mg QE/g DW in the methanol extract of C. febrifuga. HPLC-DAD revealed that rutin, gallic acid and protocatechuic acid were the most abundant phenolics in T. diversifolia, P. Biglobosa and C. Febrifuga respectively. The antioxidant activity assayed by five different methods revealed very good activity especially in the DPPH?, ABTS?+ and CUPRAC assays where the extracts were more active than the standard compounds used. Good inhibition was exhibited against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with methanol (IC50: 15.63 ± 0.72 µg/mL), ethyl acetate (IC50: 16.20 ± 0.67 µg/mL) extracts of P. biglobosa, and methanol (IC50: 21.53 ± 0.65 µg/mL) and ethyl acetate (IC50: 30.81 ± 0.48 µg/mL) extracts of T. diversifolia showing higher inhibition than galantamine (IC50: 42.20 ± 0.44 µg/mL) against BChE. Equally, good inhibition was shown on α-amylase and α-glucosidase. On the α-glucosidase, the ethyl acetate (IC50 = 12.47 ± 0.61 µg/mL) and methanol extracts (IC50 = 16.51 ± 0.18 µg/mL) of P. biglobosa showed higher activity compared to the standard acarbose (IC50 = 17.35 ± 0.71 µg/mL) and on α-amylase, the ethyl acetate (IC50 = 13.50 ± 0.90 µg/mL) and methanol (IC50 = 18.12 ± 0.33 µg/mL) extracts of P. biglobosa showed higher activity compared to acarbose (IC50 = 23.84 ± 0.25 µg/mL). The results indicate that these plants are good sources of antioxidant phenolics and can be used to manage oxidative stress linked illnesses such as Alzheimer’s disease and diabetes.  相似文献   

16.
A new series of 5,6-dimethyl-2-phenyl-1H-benzimidazole derivatives was synthesized. The antioxidant activities of the synthesized compounds were determined according to the cupric reducing antioxidant capacity (CUPRAC), ABTS, and DPPH assays. Many of the target compounds showed good antioxidant activity. Among these compounds, it has been determined that the carbothioamide and 1,2,4-triazole derivatives had a very good antioxidant capacity. Also, all compounds were screened for in vitro inhibitory activity against Jack bean urease. Among the synthesized molecules, the starting compound, acetate, and acetohydrazide derivatives (with IC50 values 12.02, 11.40, and 8.04 μg/mL, respectively) had a higher inhibitory effect on urease and exhibited a lower IC50 values than acetohydroxamic acid (IC50: 20.50 μg/mL) and thiourea (IC50: 14.04 μg/mL) as a reference inhibitors.  相似文献   

17.
Ethanol extract of the aerial parts of Bergenia ligulata was subjected to solvent–solvent separation followed by various chromatographic techniques that lead to isolation of bergenine (1), p-hydroxybenzoyl bergenin (2), 11-O-galloylbergenin (3) and methyl gallate (4) as major constituents. Ethyl acetate fraction showed a dose-dependent urease inhibitory pattern with IC50 value of 54μg/mL. Structures of compounds 1 and 3 were established by XRD and 2, 4 by NMR. All these compounds were subjected to DPPH scavenging activity, reducing power assay and urease inhibitory activity. The EC50 7.45 ± 0.2 μg/mL and 5.39 ± 0.28 μg/mL values in terms of antioxidant and reducing power, respectively, were less for 3. Compounds 13 showed moderate to significant urease inhibitory potential with IC50 57.1 ± 0.7, IC50 48.4 ± 0.3 and 38.6 ± 1.5. Antioxidant activities and urease inhibitory potential were investigated and compound 3 was found to be the most active.  相似文献   

18.
19.
Three phloretin derivates were achieved through condensation of the phloretin template with thiosemicarbazide, 4-methylthiosemicarbazide, and 4-phenyl-3-thiosemicarbazide. Their purity was confirmed by high-performance liquid chromatograph and their structures were determined from their ultraviolet spectra, Fourier-transform infrared, 1H and 13C NMR, and mass spectra. The solubility of these novel compounds in ultrapure water at 25 °C was significantly improved compared with that of phloretin in the following order: phloretin thiosemicarbazone (PT, >1.00 mg/mL) > phloretin-4-phenyl-3-thiosemicarbazone (PPT, 0.52 mg/mL) > phloretin-4-methylthiosemicarbazone (PMT, 0.24 mg/mL) > phloretin (0.02 mg/mL). The tyrosinase inhibitory effect and various antioxidant assays in vitro were evaluated. Results showed that PT possesses potent tyrosinase inhibitory activity (IC50 = 57.81 ± 1.46 μM), which was better than phloretin (IC50 = 70.08 ± 0.88 μM). They also significantly quenched 1,1-diphenyl-2-picryl-hydrazyl and exhibited strong activity against the lipid peroxidation induced by Fe2+/ascorbic acid. Likewise, these compounds significantly protected against 2,2′-azo-bis(2-amidinopropane)dihydrochloride-induced Cu, Zn-superoxide dismutase, and pBR322 plasmid DNA damage in a dose-dependent manner.  相似文献   

20.
In the present study novel heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) (1, 2, 3, 4a-e and 5a-e) were designed and synthesized and investigated for their antimicrobial (against selected bacteria and fungi) and anticancer potential. The molecules 4e and 5e containing 4-fluoro phenyl and 4-fluoro benzyl substituents showed promising antimicrobial (antibacterial and antifungal activities with MICs ranging between 0.5 and 8 µg/mL. Compounds 3 exhibited potent anticancer activity with an IC50 value of 0.49 ± 1.45 µM against the human gastric cancer cell line (BGC-823) whereas compound 4e displayed an IC50 value of 0.65 ± 0.53 µM against breast cancer (MCF-7) cell line respectively. All compounds showed selective toxicity against the cancer cell lines compared to human normal liver cell lines. Molecular docking studies of the most potent compounds (3 and 4e) against selected microbial and cancer proteins revealed the crucial binding interactions of the potent compounds with the target enzymes. Compounds 3 and 4e are promising lead molecules to be developed as potential drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号