首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The aim of this research was to study the production of humic acids (HA) by Trichoderma reesei from empty fruit bunches (EFBs) of palm oil processing, with a focus on the effects of lignocellulosic content and residual lipids. EFBs from two different soils and palm oil producers were previously characterized about their lignocellulosic composition. Submerged fermentations were inoculated with T. reesei spores and set up with or without residual lipids. The results showed that the soil and the processing for removal of the palm fresh fruits were crucial to EFB quality. Thus, EFBs were classified as type 1 (higher lignocellulosic and fatty acids composition similar to the palm oil and palm kernel oil) and type 2 (lower lignocellulosic content and fatty acids composition similar to palm oil). Despite the different profiles, the fungal growth was similar for both EFB types. HA production was associated with fungal growth, and it was higher without lipids for both EFBs. The highest HA productivity was obtained from type 1 EFB (approximately 90 mg L−1 at 48 h). Therefore, the lignocellulosic composition and the nature of the residual lipids in EFBs play an important role in HA production by submerged fermentation.

  相似文献   

2.
The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l?1 [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g?1 biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l?1 of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l?1 after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.  相似文献   

3.
4.
Solid-state fermentation (SSF) is a bioconversion process for turning cheap agro-industrial materials to added-value products. For enrichment of agro-industrial materials with arachidonic acid (ARA; C20:4 n-6), SSF process of Mortierella sp. was developed by optimizing cultivation medium and parameters. The results showed that the fungal cultivation on the medium with optimal ratio of selected agricultural materials provided the fermented mass containing high ARA proportion of total fatty acid. Inclusion of the optimal medium with suitable amount of spent mushroom substrate, which was used as an internal support, significantly promoted the ARA production yield. Using the predicted quadratic model generated by Box–Behnken design, the maximal ARA production yield was achieved, thereby the fermentation parameter set for ARA production was experimentally validated using the developed medium formula. Of variables studied, the culture temperature and initial moisture content were important for the ARA production. The developed SSF process would provide a prospect for larger scale production of ARA by this fungal strain.  相似文献   

5.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

6.
Marine-derived fungi are prone to produce structurally unique secondary metabolites, a considerable number of which display the promising biological properties and/or industrial applications. Among those, ligninolytic enzymes have attracted great interest in recent years. In this work, about 20 strains were isolated from sea mud samples collected in the East China Sea and then screened for their capacity to produce lignin-degrading enzymes. The results showed that a strain, named J63, had a great potential to secrete a considerable amount of laccase. Using molecular method, it was identified as an endophytic fungus, Pestalotiopsis sp. which was rarely reported as ligninolytic enzyme producer in the literature. The production of laccase by Pestalotiopsis sp. J63 was investigated under submerged fermentation (SF) and solid state fermentation (SSF) with various lignocellulosic by-products as substrates. The SSF of rice straw powder accumulated the highest level of laccase activity (10,700 IU/g substrate), whereas the SF of untreated sugarcane bagasse provided the maximum amount of laccase activity (2,000 IU/ml). The value was far higher than those reported by other reports. In addition, it produced 0.11 U/ml cellulase when alkaline-pretreated sugarcane bagasse was used as growth substrate under SF. Meanwhile, the growth of fungi and laccase production under different salinity conditions were also studied. It appeared to be a moderately halo-tolerant organism.  相似文献   

7.
Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g?1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g?1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.  相似文献   

8.
The distribution and chemical patterns of lignocellulosic components at microscopic scale and their effect on the simultaneous saccharification and fermentation process (SSF) in the production of bioethanol from Pinus radiata pulps were analyzed by the application of diverse microscopical techniques, including scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM) and attenuated total reflectance (ATR) – Fourier transform infrared microspectroscopy. This last technique was accompanied with multivariate methods, including principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to evaluate the distribution patterns and to generate pure spectra of the lignocellulosic components of fibers. The results indicate that the information obtained by the techniques is complementary (ultrastructure, confocality and chemical characterization) and that the distribution of components affects the SSF yield, identifying lignin coalescence droplets as a characteristic factor to increase the SSF yield. Therefore, multivariate analysis of the infrared spectra enabled the in situ identification of the cellulose, lignin and lignin-carbohydrates arrangements. These techniques could be used to investigate the lignocellulosic components distribution and consequently their recalcitrance in many applications where minimal sample manipulation and microscale chemical information is required.  相似文献   

9.
Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett–Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (32) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.  相似文献   

10.
Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g?1 dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g?1 dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546–842 μmol g?1 dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.  相似文献   

11.
Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4.  相似文献   

12.
Corn stover silage (CSS) was pretreated by Phanerochaete chrysosporium in solid-state fermentation (SSF), to enhance methane production via subsequent anaerobic digestion (AD). Effects of washing of corn stover silage (WCSS) on the lignocellulosic biodegradability in the fungal pretreatment step and on methane production in the AD step were investigated with comparison to the CSS. It was found that P. chrysosporium had the degradation of cellulose, hemicellulose, and lignin of CSS up to 19.9, 32.4, and 22.6 %, respectively. Consequently, CSS pretreated by 25 days achieved the highest methane yield of 265.1 mL/g volatile solid (VS), which was 23.0 % higher than the untreated CSS. However, the degradation of cellulose, hemicellulose, and lignin in WCSS after 30 days of SSF increased to 45.9, 48.4, and 39.0 %, respectively. Surface morphology and Fourier-transform infrared spectroscopy analyses also demonstrated that the WCSS improved degradation of cell wall components during SSF. Correspondingly, the pretreatment of WCSS improved methane production by 19.6 to 32.6 %, as compared with untreated CSS. Hence, washing and reducing organic acids (such as lactic acid, acetic acid, propionic acid, and butyric acid) present in CSS has been proven to further improve biodegradability in SSF and methane production in the AD step.  相似文献   

13.
The development of green technologies and bioprocesses such as solid-state fermentation (SSF) is important for the processing of macroalgae biomass and to reduce the negative effect of Sargassum spp. on marine ecosystems, as well as the production of compounds with high added value such as fungal proteins. In the present study, Sargassum spp. biomass was subjected to hydrothermal pretreatments at different operating temperatures (150, 170, and 190 °C) and pressures (3.75, 6.91, and 11.54 bar) for 50 min, obtaining a glucan-rich substrate (17.99, 23.86, and 25.38 g/100 g d.w., respectively). The results indicate that Sargassum pretreated at a pretreatment temperature of 170 °C was suitable for fungal growth. SSF was performed in packed-bed bioreactors, obtaining the highest protein content at 96 h (6.6%) and the lowest content at 72 h (4.6%). In contrast, it was observed that the production of fungal proteins is related to the concentration of sugars. Furthermore, fermentation results in a reduction in antinutritional elements, such as heavy metals (As, Cd, Pb, Hg, and Sn), and there is a decrease in ash content during fermentation kinetics. Finally, this work shows that Aspergillus oryzae can assimilate nutrients found in the pretreated Sargassum spp. to produce fungal proteins as a strategy for the food industry.  相似文献   

14.
Among matrices used for immobilizing Bacillus acidicola cells [calcium alginate, chitosan + alginate, scotch brite, and polyurethane foam (PUF)], ??-amylase production was highest by PUF-immobilized cells (9.1?U?ml?1), which is higher than free cells (7.2?U?ml?1). The PUF-immobilized cells could be reused over seven cycles with sustained ??-amylase production. When three variables (moisture, starch, and ammonium sulfate), which significantly affected enzyme production in solid-state fermentation (SSF), were optimized using response surface methodology, 5.6-fold enhancement in enzyme production was attained. The enzyme production in SSF is 3.8-fold higher than that in submerged fermentation. The bread made by supplementing dough with ??-amylase of B. acidicola scored better than those with the xylanase of Bacillus halodurans and thermostable ??-amylase of Geobacillus thermoleovorans.  相似文献   

15.
To increase the value of coproducts from corn ethanol fermentation and soybean aqueous processing, distiller??s dried grains with solubles (DDGS) and soybean cotyledon fiber were used as the substrates for solid state fermentation (SSF) to improve feed digestibility. Aspergillus oryzae, Trichoderma reesei, and Phanerochaete chrysosporium were chosen as they produce desirable enzymes and are widely used in SSF for feed. The results showed that the cellulase and xylanase activities were significantly increased after 7?days of fermentation, and cellulose and hemicellulose degradation was also greatly increased. When soybean fiber was used as SSF substrate, the maximum activities of the cellulase and xylanase were 10.3 and 84.2?IU/g substrate (dry weight basis) after SSF treatment, respectively. However, the enzyme activities were relatively low in DDGS, and the growth of the three fungi was poor. The fungi grew better when soybean cotyledon fiber was added to DDGS, and cellulase and xylanase activity increased with the increase of soybean fiber content. Porosity was identified as an important factor for SSF because the addition of inert soybean hull alone improved the fungi growth significantly. These data suggest that the nutritional value of DDGS and soybean cotyledon fiber as monogastric animal feed could be greatly enhanced by SSF treatment.  相似文献   

16.
Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.  相似文献   

17.
Water extracts from solid-state fermentation (SSF) on rapeseed meal using filamentous fungi exhibit interesting immunomodulatory activities in vitro. Immunomodulation was determined by the capacity of the compounds to activate blood neutrophils and to influence cytokine production in human peripheral blood mononuclear cells (PBMC) and mouse bone marrow-derived macrophages (BMDM). Among the strains tested, Aspergillus sojae mycelium and SSF extracts were the most promising in terms of enhancing the immune response. The filamentous fungus was also successfully cultivated in a pre-pilot bioreactor with forced aeration. The results indicated that the extracts not only activated blood neutrophils but also significantly modulated IL-1β cytokine levels with lipopolysaccharide (LPS)-stimulated PBMC and BMDM without any cytotoxicity in immune cells. IL-1β was down-regulated in a dose-dependent manner in the presence of A. sojae crude mycelium and SSF extract with PBMC, which indicated that there was an anti-inflammatory activity, whereas IL-1β secretion was up-regulated in the presence of stimulated BMDM with the highest concentration that was tested (100 μg/mL). The non-fermented rapeseed had no effect at the same concentration. SSF culture, as a natural product, may be a good source for the development of functional feed with an immunostimulating effect or could potentially be used in medicinal applications.  相似文献   

18.
Among the lignocellulosic substrates tested, wheat bran supported a high xylanase (EC 3.2.1.8) secretion by Humicola lanuginosa in solid-state fermentation (SSF). Enzyme production reached a peak in 72 h followed by a decline thereafter. Enzyme production was very high (7832 U/g of dry moldy bran) when wheat bran was moistened with tap water at a substrate-to-moistening agent ratio of 1:2.5 (w/v) and an inoculum level of 3 × 106 spores/10 g of wheat bran at a water activity (a w ) of 0.95. Cultivation of the mold in large enamel trays yielded a xylanase titer comparable with that in flasks. Parametric optimization resulted in a 31% increase in enzyme production in SSF. Xylanase production was approx 23-fold higher in SSF than in submerged fermentation (SmF). A threshold constitutive level of xylanase was secreted by H. lanuginosa in a medium containing glucose as the sole carbon source. The enzyme was induced by xylose and xylan. Enzyme synthesis was repressed beyond 1.0% (w/v) xylose in SmF, whereas it was unaffected up to 3.0% (w/w) in SSF, suggesting a minimization of catabolite repression in SSF.  相似文献   

19.
R,R-2,3-butanediol (R,R-2,3-BD) was produced by Paenibacillus polymyxa ZJ-9, which was capable of utilizing inulin without previous hydrolysis. The Jerusalem artichoke pomace (JAP) derived from the conversion of Jerusalem artichoke powder into inulin extract, which was usually used for biorefinery by submerged fermentation (SMF), was utilized in solid state fermentation (SSF) to produce R,R-2,3-BD. In this study, the fermentation parameters of SSF were optimized and determined in flasks. A novel bioreactor was designed and assembled for the laboratory scale-up of SSF, with a maximum yield of R,R-2,3-BD (67.90 g/kg (JAP)). This result is a 36.3% improvement compared with the flasks. Based on the same bath of Jerusalem artichoke powder, the total output of R,R-2,3-BD increased by 38.8% for the SSF of JAP combined with the SMF of inulin extraction. Overall, the utilization of JAP for R,R-2,3-BD production was beneficial to the comprehensive utilization of Jerusalem artichoke tuber.  相似文献   

20.
Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号