首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we present a powerful stirred tank reactor system that can efficiently hydrolyse lignocellulosic material at high solid content to produce hydrolysates with glucose concentration > 100 g/kg. As lignocellulosic substrates alkaline-pretreated wheat straw and organosolv-pretreated beech wood were used. The developed vertical reactor was equipped with a segmented helical stirrer, which was specially designed for high biomass hydrolysis. The stirrer was characterised according to mixing behaviour and power input. To minimise the cellulase dosage, a response surface plan was used. With the empirical relationship between glucose yield, cellulase loading and solid content, the minimal cellulase dosage was calculated to reach at least 70 % yield at high glucose and high substrate concentrations within 48 h. The optimisation resulted in a minimal enzyme dosage of 30 FPU/g dry matter (DM) for the hydrolysis of wheat straw and 20 FPU/g DM for the hydrolysis of beech wood. By transferring the hydrolysis reaction from shaking flasks to the stirred tank reactor, the glucose yields could be increased. Using the developed stirred tank reactor system, alkaline-pretreated wheat straw could be converted to 110 g/kg glucose (76 %) at a solid content of 20 % (w/w) after 48 h. Organosolv-pretreated beech wood could be efficiently hydrolysed even at 30 % (w/w) DM, giving 150 g/kg glucose (72 %).  相似文献   

2.
Xylanases have raised interest because of their potential applications in various industrial fields, including the pulp and paper industries, bioethanol production, and the feed industry. In bioethanol production from lignocellulosic compounds, xylanase can improve the hydrolysis of cellulose into fermentable sugars, since the xylan restricts the cellulases from acting efficiently. In this work, a new thermophilic Streptomyces sp. was selected for its ability to produce xylanase. Carbon source selection is an important factor in the production of hemicellulases. The highest activity was obtained when Streptomyces sp. I3 was grown in the presence of wheat bran. Xylanase activity was partially characterized concerning the effect of pH and temperature on activity and thermostability, and the effects of different metal ions were also tested. The pH and temperature profile showed optimal activity at pH 6.0/70 °C. Zymogram analysis showed multiple xylanases (39, 21, 18, and 17 kDa). Xylanases studied in this work are thermophilic, thermostable, and active in a wide pH range; they have potential to be used in the development of new processes of biotechnological interest.  相似文献   

3.
Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s−1. Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose–response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.  相似文献   

4.
Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.  相似文献   

5.
Pathogenic microbes are a major source of health and environmental problems, mostly due to their easy proliferation on most surfaces. Currently, new classes of antimicrobial agents are under development to prevent microbial adhesion and biofilm formation. However, they are mostly from synthetic origin and present several disadvantages. The use of natural biopolymers such as cellulose, hemicellulose, and lignin, derived from lignocellulosic materials as antimicrobial agents has a promising potential. Lignocellulosic materials are one of the most abundant natural materials from renewable sources, and they present attractive characteristics, such as low density and biodegradability, are low-cost, high availability, and environmentally friendly. This review aims to provide new insights into the current usage and potential of lignocellulosic materials (biopolymer and fibers) as antimicrobial materials, highlighting their future application as a novel drug-free antimicrobial polymer.  相似文献   

6.
The photoelectrochemical (PEC) water decomposition is a promising method to produce hydrogen from water. To improve the water decomposition efficiency of the PEC process, it is necessary to inhibit the generation of H2O2 byproducts and reduce the overpotential required by cheap catalysts and a high current density. Studies have shown that coating the electrode with chiral molecules or chiral films can increase the hydrogen production and reduce the generation of H2O2 byproducts. This is interpreted as the result of a chiral induced spin selectivity (CISS) effect, which induces a spin correlation between the electrons that are transferred to the anode. Here, we report the adsorption of chiral molecules onto titanium disulfide nanosheets. Firstly, titanium disulfide nanosheets were synthesized via thermal injection and then dispersed through ultrasonic crushing. This strategy combines the CISS with the plasma effect caused by the narrow bandgap of two-dimensional sulfur compounds to promote the PEC water decomposition with a high current density.  相似文献   

7.
Lignocellulosic biomass is mainly composed of cellulose, hemicellulose, and lignin. Fuzzy logic, in turn, is a branch of many-valued logic based on the paradigm of inference under vagueness. This paper presents a methodology, based on computational intelligence, for modeling the kinetics of a complex reactional system. The design of a fuzzy interpolator to model cellulose hydrolysis is reported, within the perspective of applying kinetic models in bioreactor engineering. Experimental data for various types of lignocellulosic materials were used to develop the interpolator. New experimental data from the enzymatic hydrolysis of a synthetic substrate, on the other hand, were used to validate the methodology. The accuracy of the results indicates that this is a promising approach to extend the application of models fitted for specific situations to different cases, thus enhancing their generality.  相似文献   

8.
Simple and convenient methods for determining surface chemical composition of lignocellulosic materials are described. The methods are based on vapor phase fluorine surface derivatization with either trifluoro acetic anhydride (TFAA), tri-fluoro ethanol (TFE) or pentafluorophenyl hydrazine (PFPH) and subsequent Electron Spectroscopy for Chemical Analysis (ESCA). Model cellulosic surfaces with well defined functionalities were used to optimize the derivatization reaction conditions. Detection and accessibility of surface hydroxyl functional groups were investigated in cotton and regenerated cellulose as models. Carboxymethyl cellulose (CMC) was used as a model surface for detection and quantification of carboxylic acid groups. Theoretical conversion curves for derivatization reactions were calculated and used to evaluate the extent of the reactions on the model surfaces. It was found that the conversion was higher for the regenerated cellulose and CMC than for cotton. The protocols developed using the model surfaces were applied to a case study on wood fibers with different degrees of complexity, namely dissolving and chemithermomechanical (CTMP) pulp. Untreated and oxygen-plasma modified pulps were compared with respect to the surface composition of functional groups. According to the derivatization reactions, functionalities containing oxygen were significantly increased on the plasma-treated samples. The effect of the treatment was found to be dependent on the type of pulp. Fluorine derivatization is shown to be an unambiguous method for clear assessment of the chemical functionalities of cellulosic surfaces.  相似文献   

9.
Amending soil with organic matter is common in agricultural and logging practices. Such amendments have benefits to soil fertility and crop yields. These benefits may be increased if material is preprocessed before introduction into soil. We analyzed the efficiency of microaerobic fermentation (MF), also referred to as Bokashi, in preprocessing fibrous lignocellulosic (FLC) organic materials using varying produce amendments and leachate treatments. Adding produce amendments increased leachate production and fermentation rates and decreased the biological oxygen demand of the leachate. Continuously draining leachate without returning it to the fermentors led to acidification and decreased concentrations of polysaccharides (PS) in leachates. PS fragmentation and the production of soluble metabolites and gases stabilized in fermentors in about 2?C4?weeks. About 2?% of the carbon content was lost as CO2. PS degradation rates, upon introduction of processed materials into soil, were similar to unfermented FLC. Our results indicate that MF is insufficient for adequate preprocessing of FLC material.  相似文献   

10.
Recovering hydrolysis enzymes and/or alternative enzyme addition strategies are two potential mechanisms for reducing the cost during the biochemical conversion of lignocellulosic materials into renewable biofuels and biochemicals. Here, we show that enzymatic hydrolysis of acid-pretreated pine wood with continuous and/or fed-batch enzyme addition improved sugar conversion efficiencies by over sixfold. In addition, specific activity of the hydrolysis enzymes (cellulases, hemicellulases, etc.) increased as a result of continuously washing the residual solids with removal of glucose (avoiding the end product inhibition) and other enzymatic inhibitory compounds (e.g., furfural, hydroxymethyl furfural, organic acids, and phenolics). As part of the continuous hydrolysis, anion exchange resin was tested for its dual application of simultaneous enzyme recovery and removal of potential enzymatic and fermentation inhibitors. Amberlite IRA-96 showed favorable adsorption profiles of inhibitors, especially furfural, hydroxymethyl furfural, and acetic acid with low affinity toward sugars. Affinity of hydrolysis enzymes to adsorb onto the resin allowed for up to 92 % of the enzymatic activity to be recovered using a relatively low-molar NaCl wash solution. Integration of an ion exchange column with enzyme recovery into the proposed fed-batch hydrolysis process can improve the overall biorefinery efficiency and can greatly reduce the production costs of lignocellulosic biorenewable products.
Figure
A semicontinuous process for the biochemical production of renewable products using detoxification and fed-batch enzyme addition/recycle can increase enzymatic hydrolysis and fermentation efficiencies. Hydrolysis enzymes, inhibitors, sugars, and water can be separated and utilized as high-value steams within the process  相似文献   

11.
离子表面活性剂胶团对阿斯匹林碱水解反应的影响   总被引:3,自引:0,他引:3  
史振民  刘生昆 《应用化学》1997,14(1):110-112
离子表面活性剂胶团对阿斯匹林碱水解反应的影响史振民*刘生昆张祝莲巩育军(延安大学化学系延安716000)关键词表面活性剂,阿斯匹林,碱水解反应,胶团,抑制作用1996-05-04收稿,1996-08-12修回阿斯匹林(ASP),学名为乙酰水杨酸,有较...  相似文献   

12.
在保持原有"层-柱"MOF[Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1)(H4bpta=2,2'',6,6''-联苯四羧酸,dipytz=3,6-二(4-吡啶基)-1,2,4,5-四嗪)主体结构不变的情况下,通过dipytz配体中四嗪环的原位水解反应将极性的二芳酰基联氨基团引入框架,成功构筑出配合物[Zn4(bpta)2(dipytzhydr2(H2O)2]·solvent (2)(dipytzhydr=1,2-二异烟酰基肼)。对配合物2的系统表征和气体吸附性质研究结果证实了功能化目标的实现:配合物2相比于配合物1展现出更高的二氧化碳吸附热(由28.8 kJ·mol-1升高至30.3 kJ·mol-1)和CO2/CH4吸附选择性。以上结果表明基于配体中四嗪基团的原位水解后修饰能够有效提高相关MOFs材料的CO2吸附性能。  相似文献   

13.
To enhance the conversion of the cellulose and hemicellulose, the corncob pretreated by aqueous ammonia soaking was hydrolyzed by enzyme complexes. The saturation limit for cellulase (Spezyme CP) was determined as 15 mg protein/g glucan (50 filter paper unit (FPU)/g glucan). The accessory enzymes (β-glucosidase, xylanase, and pectinase) were supplemented to hydrolyze cellobiose (cellulase-inhibiting product), hemicellulose, and pectin (the component covering the fiber surfaces), respectively. It was found that β-glucosidase (Novozyme 188) loading of 1.45 mg protein/g glucan [30 cellobiase units (CBU)/g glucan] was enough to eliminate the cellobiose inhibitor, and 2.9 mg protein/g glucan (60 CBU/g glucan) was the saturation limit. The supplementation of xylanase and pectinase can increase the conversion of cellulose and hemicellulose significantly. The yields of glucose and xylose enhanced with the increasing enzyme loading, but the increasing trend became low at high loading. Compared with xylanase, pectinase was more effective to promote the hydrolysis of cellulose and hemicellulose. The supplementation of pectinase with 0.12 mg protein/g glucan could increase the yields of glucose and xylose by 7.5% and 29.3%, respectively.  相似文献   

14.
The effect of biosurfactant rhamnolipid (RL) on hydrolysis and acidification of waste activated sludge (WAS) was investigated. The results indicated that RL could greatly reduce the surface tension of sludge, resulting in stimulating the hydrolysis rate of WAS and enhancing the production of short-chain fatty acids (SCFAs). With the increase of RL dosage from 0.2 to 0.5 g/g DS, the maximum soluble chemical oxygen demand (SCOD), protein and carbohydrate concentration increased correspondingly. After 6 h of hydrolysis, SCOD, protein and carbohydrate concentration increased from 371.9, 93.3 and 9.0 mg/l to 3,994.5, 800.0 and 401.4 mg/l at RL 0.3 g/g DS, respectively. Furthermore, the release of NH4 +-N, PO4 3?-P and the accumulation of SCFAs also improved in the presence of RL. The maximum SCFAs was 1,829.9 mg COD/l at RL 0.3 g/g DS, while it was only 377.7 mg COD/l for the blank test. The propionic acid and acetic acid were the mainly SCFAs produced, accounting for 50–60% of total SCFAs.  相似文献   

15.
以酪蛋白水解度为指标,采用pH-stat法优化了胰蛋白酶催化酪蛋白水解的反应条件,并以该酶为检测用酶,分析了酪蛋白浓度与酶解反应初速度的关系,并建立了一种快速检测牛奶中蛋白质含量的方法.在pH=7.5,温度55℃的条件下,用pH-stat法测得酪蛋白浓度与酶促蛋白质水解反应初速度呈良好线性关系.最后采用该酶催化水解法测...  相似文献   

16.
钱彬彬  赵萌  常泽  卜显和 《无机化学学报》2017,33(11):2051-2059
在保持原有“层-柱”MOF,[Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1)(H4bpta=2,2'',6,6''-联苯四羧酸,dipytz=3,6-二(4-吡啶基)-1,2,4,5-四嗪)主体结构不变的情况下,通过dipytz配体中四嗪环的原位水解反应将极性的二芳酰基联氨基团引入框架,成功构筑出配合物[Zn4(bpta)2(dipytzhydr)2(H2O)2]·solvent (2)(dipytzhydr=1,2-二异烟酰基肼)。对配合物2的系统表征和气体吸附性质研究结果证实了功能化目标的实现:配合物2相比于配合物1展现出更高的二氧化碳吸附热(由28.8 kJ·mol-1升高至30.3 kJ·mol-1)和CO2/CH4吸附选择性。以上结果表明基于配体中四嗪基团的原位水解后修饰能够有效提高相关MOFs材料的CO2吸附性能。  相似文献   

17.
Pretreatment based on aqueous ammonia was investigated under two different modes of operation: soaking in aqueous ammonia and ammonia recycle percolation. These processes were applied to three different feedstocks with varied composition: corn stover, high lignin (HL), and low lignin (LL) hybrid poplars. One of the important features of ammonia-based pretreatment is that most of the hemicellulose is retained after treatment, which simplifies the overall bioconversion process and enhances the conversion efficiency. The pretreatment processes were optimized for these feedstocks, taking carbohydrate retention as well as sugar yield in consideration. The data indicate that hybrid poplar is more difficult to treat than corn stover, thus, requires more severe conditions. On the other hand, hybrid poplar has a beneficial property that it retains most of the hemicellulose after pretreatment. To enhance the digestibility of ammonia-treated poplars, xylanase was supplemented during enzymatic hydrolysis. Because of high retention of hemicellulose in treated hybrid poplar, xylanase supplementation significantly improved xylan as well as glucan digestibility. Of the three feedstocks, best results and highest improvement by xylanase addition was observed with LL hybrid poplar, showing 90% of overall sugar yield.  相似文献   

18.
Abstract

This review discusses the principles of immobilized metal ion affinity chromatography (IMAC) and its applications to protein separations. IMAC functions by binding the accessible electron-donating pendant groups of a protein - such as histidine, cysteine, and tryptophan - to a metal ion which is held by a chelating group covalently attached on a stationary support. A common chelating group is iminodiacetate. The ions commonly used are of borderline or soft metals, such as Cu2+, Ni2+, Co2+, and Zn2+. Protein retention in IMAC depends on the number and type of pendant groups which can interact with the metal. The interaction is affected by a variety of independent variables such as pH, temperature, solvent type, salt type, salt concentration, nature of immobilized metal and chelate, ligand density, and protein size. Proteins are usually eluted by a decreasing pH gradient or by an increasing gradient of a competitive agent, such as imidazole, in a buffer. There are still several unresolved issues in IMAC. The exact structures of protein-immobilized metal complexes need to be known so that retention behavior of proteins can be fully understood and sorbent structures can be optimized. Engineering parameters, such as adsorption/desorption rate constants, sorbent capacities, and intraparticle diffusivities, need to be developed for most protein systems. Engineering analysis and quantitative understanding are also needed so that IMAC can be used efficiently for large scale protein separations.  相似文献   

19.
In an effort to utilize NMR technique for the analysis of the structural components of wood and biomasses such as lignin, we made a comparative study of lignin contents of several types of lignocellulosic materials both before and after enzymatic hydrolyses. To this end, Eucalyptus Globulus, Norway spruce thermomechanical pulp(TMP) corn stover and Eucalyptus kraft pulp were ball-milled and treated with cellulase to prepare materials with high lignin contents. These materials were analyzed via 31P NMR in ionic liquids. The results show that the contents of various functional groups for the lignocellulosic materials after enzymatic hydrolyses are generally in agreement with those from their corresponding enzymatic mild acidolysis liginins(EMALs), indicating that 31P NMR analysis of lignocellulosic materials in ionic liquids is a promising method for quantitative characterization of lignocellulosic materials.  相似文献   

20.
Applied Biochemistry and Biotechnology - Sorghum was pretreated by sole ultrasound or supercritical carbon dioxide (scCO2), as well as the method combining both to intensify enzymatic hydrolysis....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号