首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multienzymatic complex production was evaluated, as well as endoglucanase and total cellulase characterization, during solid-state fermentation of rice industry wastes with Rhizopus oryzae CCT 7560 (newly isolated microorganism) and Trichoderma reesei QM 9414 (control). R. oryzae produced enzymes with higher activity at 15 h of fermentation (5.1 and 2.3 U g?1 to endoglucanase and total cellulase), while T. reesei produced them at 55 h (15.3 and 2.8 U g?1 to endoglucanase and total cellulase). The optimum temperature for total cellulase and endoglucanase was 60 °C. For Trichoderma and Rhizopus, the optimum pH was 5.0 and 6.0 for total cellulase and 6.0 and 5.0 for endoglucanase, respectively. The enzymes produced by Rhizopus presented higher stability at the temperature range evaluated (25–100 °C); the endoglucanase K M value was 20 times lower than the one found for Trichoderma. The characterization of the cellulolytic enzymes from the fungal species native of rice husk revealed that they can be more efficient than the genetically modified enzymes when rice husk and rice bran are used as substrates.  相似文献   

2.
This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.  相似文献   

3.
The aim of this work was to study oxygen transfer as a function of the initial moisture content in solid-state cultivation under controlled moisture conditions. The use of controlled moisture conditions prevents drastic changes in the medium during cultivation, allowing the use of a pseudo-steady-state model to estimate the overall oxygen mass transfer coefficient (K L a) in the biofilm around the solid particles. Drechslera (Helminthosporium) monoceras, an aerobic mold that produces allergenic proteins, was cultured on wheat bran in a packed bed column bioreactor. The bed height (30 mm) and air flow rate (0.4 L/min) were selected to implement moisture control. The results show that there is an optimal moisture content (35 %) at which a lower biofilm thickness and packing of the bed improves K L a. However, a higher biomass growth was obtained at 45 % moisture. The different patterns of biomass growth demonstrate the importance of the balance between aerial and film growth in solid-state cultivation. These results contribute to the understanding of oxygen transfer in solid fermentation, optimization of processes, and production of allergen extracts from D. (Helminthosporium) monoceras biomass.  相似文献   

4.
The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn+2, significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.  相似文献   

5.
Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn2+ and Fe3+. This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.  相似文献   

6.
Exoglucanase production by brown rot fungus Fomitopsis sp. RCK2010 was optimized under solid-state fermentation using Plackett–Burman design (PBD) and response surface methodology (RSM). Four fermentation variables (moisture, inoculum level, casein, and Triton X-100) were identified to effect cellulase production significantly by PBD, which were further optimized using RSM of central composite design. An overall 130 % increase in enzyme production was achieved by the optimization of variables using statistical approaches. Moreover, crude cellulase from Fomitopsis sp. RCK2010 was applied to saccharify pretreated Prosopis juliflora (cellulosic fraction), which resulted in the release of 327.35 mg/g of reducing sugars that could further be utilized for bioethanol production.  相似文献   

7.
In the conversion of cassava starch dregs to biogas by anaerobic fermentation, the biogas residue (BR) containing lignocellulosic materials still remained in the environment. In order to effectively utilize BR, the complexed 1-methyl-3-methylimidazolium dimethyl phosphate ([Mmim]DMP) media were used for pretreating cellulosic materials. After the optimization of pretreatment, the IL [Mmim]DMP-HCl-water (78.5:1.5:20, w/w/w) pretreament media were used for pretreating BR at 130 °C for 30 min. Furthermore, BR pretreated could be effectively saccharified by cellulase of Galactomyces sp. CCZU11-1. Moreover, BR could be used as a cheap carbon source for the production of Galactomyces sp. CCZU11-1 cellulase. After the culture optimization, the optimal culture conditions were obtained as follows: BR 5 g/L, (NH4)2SO4 5 g/L, K2HPO4 2 g/L, MgSO4 0.2 g/L, NaCl 1 g/L, PEG6000 4 g/L, pH 5.5, and culture temperature 30 °C. After the fermentation for 6 days, the FPA and CMCase were 26.2 and 52.8 U/mL, respectively. In conclusion, waste BR could be chosen as a promising feedstock for biofuels.  相似文献   

8.
Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g?1 cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g?1 cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.  相似文献   

9.
Potato starch processing waste is causing serious environmental problems. This study aimed to convert potato starch processing waste into single-cell protein as high-quality feed using a two-step fermentation process. The mutant strain Aspergillus niger H3 was selected after UV irradiation and ethyl methyl sulfone mutagenesis for more cellulase production. The activities of sodium carboxymethyl cellulase and filter paperase of strain H3 were 8.86 and 4.79 U, respectively, which were much higher than the parent strain (1.18 and 0.62 U). After treatment with strain H3, the cellulose degradation rate of potato residue was 80.54 %. A liquid fermentation using Bacillus licheniformis was performed as the second step. The optimized fermentation conditions were temperature of 32.8 °C, pH 6.67, and inoculum concentration of 1.78 % using the response surface method. Results of this study showed a potential application in large-scale industrial conversion.  相似文献   

10.
The present paper studies the biotechnological production of xylitol using sugarcane bagasse hydrolysate in a repeated batch fermentation system with immobilized cells of Candida guilliermondii FTI20037. Immobilized cell system is considered as an attractive alternative to reuse the well-grown and adapted yeast cells in a new fresh fermentation media, without the need of the inoculum stage. In this work, seven repeated batches were performed in a fluidized bed bioreactor using immobilized cells in calcium alginate beads. According to the obtained results it was observed that the immobilized cells of C. guilliermondii can be reused for six successive batches maintaining an average xylitol yield (Y p/s) of 0.7 g/L and a volumetric productivity (Q p) of 0.42 g/L?h at the end of 432 h of fermentation. On the other hand, in the seventh batch (504 h), a decrease of 44 % in the final concentration of xylitol was observed. This reduction can be explained by the possible diffusion and accumulation of insoluble substances, found in the hemicellulosic hydrolysate, in the interior of the immobilization support resulting in substrate mass transfer limitations.  相似文献   

11.
Paper mill sludge is a solid waste material composed of pulp residues and ash generated from pulping and paper making processes. The carbohydrate portion of the sludge has chemical and physical characteristics similar to pulp. Because of its high carbohydrate content and well-dispersed structure, the sludges can be biologically converted to value-added products without pretreatment. In this study, two different types of paper mill sludges, primary sludge and recycle sludge, were evaluated as a feedstock for bioconversion to ethanol. The sludges were first subjected to enzymatic conversion to sugars by commercial cellulase enzymes. The enzymatic conversion was inefficient because of interference by ash in the sludges with the enzymatic reaction. The main cause was that the pH level is dictated by CaCO3 in ash, which is two units higher than the pH optimum of cellulase. To alleviate this problem, simultaneous saccharification and cofermentation (SSCF) using cellulase (Spezyme CP) and recombinant Escherichia coli (ATCC-55124), and simultaneous saccharification and fermentation (SSF) using cellulase and Saccharomyces cerevisiae (ATCC-200062) were applied to the sludges without any pretreatment. Ethanol yields of 75–81% of the theoretical maximum were obtained from the SSCF on the basis of total carbohydrates. The yield from the SSF was also found to be in the range of 74–80% on the basis of glucan. The SSCF and SSF proceeded under stable condition with the pH staying near 5.0, close to the optimum for cellulase. Decrease of pH occurred due to carbonic acid and other organic acids formed during fermentation. The ash was partially neutralized by the acids produced from the SSCF and SSF and acted as a buffer to stabilize the pH during fermentation. When the SSF and SSCF were operated in fed-batch mode, the ethanol concentration in the broth increased from 25.5 and 32.6 g/L (single feed) to 45 and 42 g/L, respectively. The ethanol concentration was limited by the tolerance of the microorganism in the case of SSCF. The ethanol yield in fed-batch operation decreased to 68% for SSCF and 70% for SSF. The high-solids condition in the bioreactor appears to create adverse effects on the cellulase reaction.  相似文献   

12.
The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3?±?0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8?±?0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3?±?0.9, 0.19, and 0.28 g/L/h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.  相似文献   

13.
Aspergillus niger CTBU isolated from local decayed bamboo shoot residue was employed to solid-state fermentation (SSF) of bamboo shoot residue to elevate the content of phytosterols. Strain acclimatization was carried out under the fermentation condition using bamboo shoot as substrate for fermentation performance improvement. The optimal fermentation temperature and nitrogen level were investigated using acclimatized strain, and SSF was carried out in a 500-ml Erlenmeyer flask feeding 300-mg bamboo shoot residue chips under the optimal condition (33 °C and feeding 4 % urea), and 1,186 mg (100 g)?1 of total phytosterol was attained after 5-day fermentation, in comparison, only 523 mg (100 g)?1 of phytosterol was assayed in fresh shoots residue. HPLC analysis of the main composition of total phytosterols displays that the types of phytosterols and composition ratio of main sterols keep steady. This laboratorial scale SSF unit could be scaled up for raw phytosterols production from discarded bamboo shoot residue and could reduce its cost.  相似文献   

14.
Aspergillus oryzae SBS50 secreted a high titre of phytase in solid-state fermentation (SSF) using wheat bran at 30 °C after 96 h at the initial substrate to moisture ratio of 1:2 and a water activity of 0.95. The production of phytase increased when wheat bran was supplemented with sucrose and beef extract. Further enhancement in enzyme production was recorded when the substrate was supplemented with the surfactant Triton X-100 (145 U/g of DMB). An overall 29-fold improvement in phytase production was achieved owing to optimization. Under optimized conditions, the mould secreted 9.3-fold higher phytase in SSF as compared to submerged fermentation (SmF). The mesophilic mould also secreted amylase, cellulase (CMCase), pectinase and xylanase along with phytase in SSF. Scanning electron microscopy revealed luxuriant growth of A. oryzae on wheat bran with abundant spores. The enzyme dephytinized wheat bran with concomitant liberation of inorganic phosphate.  相似文献   

15.
Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9?±?20.1 U/g, FPase 101.1?±?3.5 U/g and β-glucosidase 99?±?4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0–9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92–98 %.  相似文献   

16.
Arachidonic acid (ARA) and eicosapentaenoic acid (EPA) were produced by Pythium irregulare fungus using soybean cotyledon fiber and soy skim, two co-products from soybean aqueous processing, as substrates in different fermentation systems. Parameters such as moisture content, substrate glucose addition, incubation time, and vegetable oil supplementation were found to be important in solid-state fermentation (SSF) of soybean fiber, which is to be used as animal feed with enriched long-chain polyunsaturated fatty acids (PUFA). Soybean fiber with 8 % (dwb) glucose supplementation for a 7-day SSF produced 1.3 mg of ARA and 1.6 mg of EPA in 1 g of dried substrate. When soy skim was used as substrate for submerged fermentation, total ARA yield of 125.7 mg/L and EPA yield of 92.4 mg/L were achieved with the supplementation of 7 % (w/v) soybean oil. This study demonstrates that the values of soybean fiber and soy skim co-products could be enhanced through the long-chain PUFA production by fermentation.  相似文献   

17.
Strain improvement and addition of sodium lactate to fermentation medium to enhance the productivity of spiramycin were performed. Of the sodium lactate tolerant mutants that were screened, one mutant, Streptomyces spiramyceticus 16-10-12, produced 23 % more spiramycin than the original strain, Streptomyces spiramyceticus 5-1. The effect of sodium lactate on spiramycin production with S. spiramyceticus 16-10-12 was studied. The titer was improved by 16.9 % with the addition of 15 g L?1 sodium lactate in the fermentation medium at the beginning. The results from using the new process in a 15 L bioreactor showed that there were more precursors in fermentation broth with a sodium lactate tolerant mutant, and that these precursors were used more than with the original strain. After adding sodium lactate, the titer was increased by 23.4 %, because the flux to TCA circulation was increased, more precursors had been produced and the activities of Acyl-CoA synthetases, Acylphosphotransferases and Acylkinases in synthesis phase were also increased.  相似文献   

18.
Barley straw was used to demonstrate an integrated process for production of fuel ethanol and astaxanthin as a value-added co-product. Barley straw was pretreated by soaking in aqueous ammonia using the previously determined optimum conditions, which included 77.6 °C treatment temperature, 12.1 h treatment time, 15 wt% ammonia concentration, and 1:8 solid-to-liquid ratio. In the newly developed process, the pretreated barley straw was first hydrolyzed with ACCELLERASE® XY (a commercial hemicellulase product) to generate a xylose-rich solution, which contained 3.8 g/l glucose, 22.9 g/l xylose, and 2.4 g/l arabinose, with 96 % of the original glucan being left intact. The xylose-rich solution was used for production of astaxanthin by the yeast Phaffia rhodozyma without further treatment. The resulting cellulose-enriched solid residue was used for ethanol production in a fed-batch simultaneous saccharification and fermentation using ACCELLERASE® 1500 (a commercial cellulase product) and the industrial yeast Saccharomyces cerevisiae. At the end of the fermentation, 70 g/l ethanol was obtained, which was equivalent to 63 % theoretical yield based on the glucan content of the solid substrate.  相似文献   

19.
Spent coffee ground (SCG), a present waste stream from instant coffee production, represents a potential feedstock for mannooligosaccharides (MOS) production. MOS can be used in nutraceutical products for humans/animals or added to instant coffee, increasing process yield and improving product health properties. The SCG was evaluated for MOS production by steam pretreatment and enzymatic hydrolysis with a recombinant mannanase and a commercial cellulase cocktail (Acremonium, Bioshigen Co. Ltd, Japan). The mannanase was produced using a recombinant strain of Yarrowia lipolytica, used to produce and secrete endo-1,4-β,d-mannanase from Aspergillus aculeatus in bioreactor cultures. Endo-1,4-β,d-mannanase was produced with an activity of 183.5 U/mL and 0.23 mg protein/mL. The enzyme had an optimum temperature of 80 °C, and the activity in the supernatant was improved by 150 % by supplementation with 0.2 % sodium benzoate and 35 % sorbitol as a preservative and stabiliser, respectively. The steam pretreatment of SCG improved the enzymatic digestibility of SCG, thus reducing the required enzyme dosage for MOS release. Combined enzymatic hydrolysis of untreated or steam-pretreated (150, 190 and 200 °C for 10 min) SCG with mannanase and cellulase cocktail resulted in 36–57 % (based on mannan content) of MOS production with a degree of polymerization of up to 6. The untreated material required at least 1 % of both mannanase and cellulase loading. The optimum mannanase and cellulase loadings for pretreated SCG hydrolysis were between 0.3 and 1 and 0.4 and 0.8 %, respectively. Statistical analysis suggested additive effect between cellulase cocktail and mannanase on MOS release, with no indication of synergism observed.  相似文献   

20.
In this paper, a fundamental practical unit, namely the wedge-shaped enclosure, is proposed as a novel and efficient latent heat storage unit for thermal energy storage. The enthalpy–porosity method that treats the solid and liquid zones as a single domain is employed. Effect of the mushy zone constant C on melting is analyzed and a suitable value is obtained by comparing the numerical results with experimental data in the literature. A series of simulations are conducted to analyze the transient melting coupled with natural convection as well as the heat transfer process. Fourteen units those have different length ratios between top and bottom of the enclosures are investigated and compared by the analysis of transient temperature fields, vertical velocity distributions, and evolution of the melting fronts. It is found that the length ratio n dramatically affects the full melting time and heat transfer intensity. An enclosure of n = 5.5, which has the shortest completion time and the highest heat transfer intensity, is determined as the optimal unit. Compared with the base geometry (n = 1), charging time of the optimal unit (n = 5.5) decreased by 32.8 %, while the heat transfer intensity increased by 45.7 %. This is a significant improvement in the field of latent heat storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号