首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
In the operation of a direct methanol fuel cell, the modification by chloride ions on the surface of a Pt cathode can facilitate the extraordinary increase of power performance and long‐term stability. Analyzing the results of cyclic voltammograms and electrochemical impedance spectroscopy, the positive shift of Pt oxidation onset potential and the depression of oxidation current are observed, which results from the role of chloride as surface inhibitor. In addition, O2 temperature‐programmed desorption and X‐ray photoelectron spectroscopy also reveal that the suppression of Pt surface oxide can be best understood in terms of lower binding of oxygen species by the alteration of electronic state of Pt atoms. Such a reduced surface oxide formation not only provides more efficient proton adsorption sites with high selectivity but also decreases the mixed potential by crossover methanol, resulting in higher performance and stability even under high voltage long‐term operation.  相似文献   

3.
Summary: Biodegradation of film specimens from polyhydroxyalkanoates (PHAs) of two types – poly-3-hydroxybutyrate (PHB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) – was analysed in different environments: tropical sea waters of the South China Sea (Nha Trang, Vietnam) and soils in the environs of Hanoi (Vietnam), Nha Trang (Vietnam) and Krasnoyarsk (Siberia, Russia). In seawater, the mass loss of the specimens of both types was almost equal. However, in tropical soils, PHB degraded quicker than PHBV. In the Siberian soil, the degradation rate of the PHBV was generally higher than that of PHBV. Analysis of molecular mass of PHA specimens showed its decreasing during biodegradation. In the tropical sea conditions, PHA degrading microorganisms were represented by bacteria of Enterobacter, Bacillus and Gracilibacillus genera. Among PHA degrading bacteria, Burkholderia, Alcaligenes, Bacillus, Mycobacterium and Streptomyces genera were identified in Vietnamese soils, and Variovorax, Stenotrophomonas, Acinetobacter, Pseudomonas, Bacillus and Xanthomonas genera in Siberian soils. Micromycetes of Gongronella, Paecilomyces, Penicillium and Trichoderma genera exhibited PHA degrading activity in Vietnamese soils, and Paecilomyces, Penicillium, Acremonium, Verticillium and Zygosporium genera – in Siberian soils.  相似文献   

4.
The development of non-destructive methods for early detection of cold stress of plants and the identification of cold-tolerant cultivars is highly needed in crop breeding programs. Current methods are either destructive, time-consuming or imprecise. In this study, soybean leaves’ spectra were acquired in the near infrared (NIR) range (588–1025 nm) from five cultivars genetically engineered to have different levels of cold stress tolerance. The spectra were acquired at the optimal growing temperature 27 °C and when the temperature was decreased to 22 °C. In this paper, we report the results of the aquaphotomics analysis performed with the objective of understanding the role of the water molecular system in the early cold stress response of all cultivars. The raw spectra and the results of Principal Component Analysis, Soft Independent Modeling of Class Analogies and aquagrams showed consistent evidence of huge differences in the NIR spectral profiles of all cultivars under normal and mild cold stress conditions. The SIMCA discrimination between the plants before and after stress was achieved with 100% accuracy. The interpretation of spectral patterns before and after cold stress revealed major changes in the water molecular structure of the soybean leaves, altered carbohydrate and oxidative metabolism. Specific water molecular structures in the leaves of soybean cultivars were found to be highly sensitive to the temperature, showing their crucial role in the cold stress response. The results also indicated the existence of differences in the cold stress response of different cultivars, which will be a topic of further research.  相似文献   

5.
6.
In order to investigate the influence of genetic background on salt tolerance in soybean (Glycine max), ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) released in India, were selected and grown hydroponically. The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and random amplified polymorphic DNA (RAPD) analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes; however, the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20, while minimum reduction was shown by genotype Pusa-37, followed by BRAGG and PK-1042. Pusa-16, Pusa-22, Pusa-40, and DS-9712 were able to tolerate NaCl treatment up to the level of 75 Mm. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted by plant physiological measures. Twenty RAPD primers revealed high polymorphism and genetic variation among ten soybean genotypes studied. The closer varieties in the cluster behaved similarly in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the ten genotypes in sub-cluster as expected from their physiological findings. Our study shows that RAPD technique is a sensitive, precise, and efficient tool for genomic analysis in soybean genotypes.  相似文献   

7.
8.
An overreactive stress granule (SG) pathway and long-lived, stable SGs formation are thought to participate in the progress of neurodegenerative diseases (NDs). To understand if and how SGs contribute to disorders of neurotransmitter release in NDs, we examined the interaction between extracellular isolated SGs and vesicles. Amperometry shows that the vesicular content increases and dynamics of vesicle opening slow down after vesicles are treated with SGs, suggesting larger vesicles are formed. Data from transmission electron microscopy (TEM) clearly shows that a portion of large dense-core vesicles (LDCVs) with double/multiple cores appear, thus confirming that SGs induce homotypic fusion between LDCVs. This might be a protective step to help cells to survive following high oxidative stress. A hypothetical mechanism is proposed whereby enriched mRNA or protein in the shell of SGs is likely to bind intrinsically disordered protein (IDP) regions of vesicle associated membrane protein (VAMP) driving a disrupted membrane between two closely buddled vesicles to fuse with each other to form double-core vesicles. Our results show that SGs induce homotypic fusion of LDCVs, providing better understanding of how SGs intervene in pathological processes and opening a new direction to investigations of SGs involved neurodegenerative disease.  相似文献   

9.
Saccharomyces cerevisiae, industrial yeast isolate, has been of great interest in recent years for fuel ethanol production. The ethanol yield and productivity depend on many inhibitory factors during the fermentation process such as temperature, ethanol, compounds released as the result of pretreatment procedures, and osmotic stress. An ideal strain should be able to grow under different stress conditions occurred at different fermentation steps. Development of tolerant yeast strains can be achieved by reprogramming pathways supporting the ethanol metabolism by regulating the energy balance and detoxicification processes. Complex gene interactions should be solved for an in-depth comprehension of the yeast stress tolerance mechanism. Genetic engineering as a powerful biotechnological tool is required to design new strategies for increasing the ethanol fermentation performance. Upregulation of stress tolerance genes by recombinant DNA technology can be a useful approach to overcome inhibitory situations. This review presents the application of several genetic engineering strategies to increase ethanol yield under different stress conditions including inhibitor tolerance, ethanol tolerance, thermotolerance, and osmotolerance.  相似文献   

10.
The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans. This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids, fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids, and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites, flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata). Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that the genome-engineering technologies should be used to confirm the functions of candidate genes that are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative tool to breed citrus cultivars with increased antioxidant metabolites.  相似文献   

11.
用谷氨酸菌和啤酒酵母菌进行麦汁发酵培养,跟踪了累积热量值和菌量(OD值)等参数在发酵过程中的变化趋势,发现累积热量值和菌量的变化趋势相似;用一元线性回归模型和多项式回归模型对累积热量值和菌量进行曲线拟合,对模型作假设检验,结果表明累积热量值与菌量存在线性关系,累积热量值可以监控生物发酵过程。  相似文献   

12.
Wolfberry (Lycium barbarum L.) is an important economic crop widely grown in China. The effects of salt-alkaline stress on metabolites accumulation in the salt-tolerant Ningqi1 wolfberry fruits were evaluated across 12 salt-alkaline stress gradients. The soil pH, Na+, K+, Ca2+, Mg2+, and HCO3 contents decreased at a gradient across the salt-alkaline stress gradients. Based on the widely-targeted metabolomics approach, we identified 457 diverse metabolites, 53% of which were affected by salt-alkaline stress. Remarkably, soil salt-alkaline stress enhanced metabolites accumulation in wolfberry fruits. Amino acids, alkaloids, organic acids, and polyphenols contents increased proportionally across the salt-alkaline stress gradients. In contrast, nucleic acids, lipids, hydroxycinnamoyl derivatives, organic acids and derivatives and vitamins were significantly reduced by high salt-alkaline stress. A total of 13 salt-responsive metabolites represent potential biomarkers for salt-alkaline stress tolerance in wolfberry. Specifically, we found that constant reductions of lipids and chlorogenic acids; up-regulation of abscisic acid and accumulation of polyamines are essential mechanisms for salt-alkaline stress tolerance in Ningqi1. Overall, we provide for the first time some extensive metabolic insights into salt-alkaline stress tolerance and key metabolite biomarkers which may be useful for improving wolfberry tolerance to salt-alkaline stress.  相似文献   

13.
Introduction K.ScopariaisanannualintheChenopodiaceae family.Itsseedscontainabout15%oilandhavebeen usedintraditionalChinesemedicinetotreatdiuresis andskindisease[1].Thecrudeproteincontentof K.Scopariaseedlingsistwiceasmuchasthatin maize.Thisplantisalsorich…  相似文献   

14.
3,4-dihydroxyphenyl-L-alanine (L-DOPA) is a preferred drug for Parkinson’s disease, with an increasing demand worldwide that mainly relies on costly and environmentally problematic chemical synthesis. Yet, biological L-DOPA production is unfeasible at the industrial scale due to its low L-DOPA yield and high production cost. In this study, low-cost Halomonas bluephagenesis TD01 was engineered to produce tyrosinase TyrVs-immobilized polyhydroxyalkanoate (PHA) nanogranules in vivo, with the improved PHA content and increased immobilization efficiency of TyrVs accounting for 6.85% on the surface of PHA. A higher L-DOPA-forming monophenolase activity of 518.87 U/g PHA granules and an L-DOPA concentration of 974.36 mg/L in 3 h catalysis were achieved, compared to those of E. coli. Together with the result of L-DOPA production directly by cell lysates containing PHA-TyrVs nanogranules, our study demonstrated the robust and cost-effective production of L-DOPA by H. bluephagenesis, further contributing to its low-cost industrial production based on next-generation industrial biotechnology (NGIB).  相似文献   

15.
To determine the effect of CO2 laser pretreatment of wheat seeds on the physiological tolerance of seedlings to chilling stress, wheat seeds were exposed to CO2 laser radiation for 300 s. After being cultivated for 48 h at 25°C, the wheat seedlings were subjected to chilling stress for 24 h. Selected physiological and biochemical parameters were measured in 6-day-old seedlings. We observed that chilling stress enhanced the concentrations of malondialdehyde and oxidized glutathione while decreasing the activities of nitric oxide synthase, catalase, peroxidase, superoxide dismutase and the concentrations of nitric oxide and glutathione in the wheat leaves compared with controls. When the chilling stress was preceded by CO2 laser irradiation, the concentrations of malondialdehyde and oxidized glutathione were decreased while the activities of nitric oxide synthase, catalase, peroxidase, superoxide dismutase and the concentrations of nitric oxide and glutathione increased. Furthermore, chilling stress decreased the biomass, biophoton intensity and GHS/GSSG ratios of seedlings while these parameters increased when the seedlings were treated with CO2 laser irradiation prior to the chilling stress. The results suggest that a suitable dose of CO2 laser stimulation can enhance the physiological tolerance of wheat seedlings to chilling stress.  相似文献   

16.
王喆  赵志西 《化学通报》2020,83(1):23-29
高砷地下水污染是一个全球性的环境问题。在特定地质、地貌、气候和水文及水化学条件下,含砷矿物发生吸附-脱附反应,砷元素迁移和释放进入水体,导致高砷地下水生成并危害周围人群健康。本文在系统总结前人研究工作基础上,从吸附质和吸附剂两方面讨论了竞争吸附、氧化还原、pH和有机质等因素对砷吸附-脱附行为的影响,总结得到三种砷吸附-脱附控制机制,即静电吸附机制、离子交换机制和络合形态机制。本文可以为揭示高砷地下水发生机制以及开展砷污染控制和治理提供有益帮助。  相似文献   

17.
18.
Shi  Jianbin  Wang  Jian  Wang  Ning  Zhou  Hong  Xu  Qinghua  Yan  Gentu 《Applied biochemistry and biotechnology》2019,187(4):1204-1219
Applied Biochemistry and Biotechnology - It has been known that GA2ox is one kind of key enzyme gene in the gibberellin synthesis pathway, which plays important regulatory roles throughout plant...  相似文献   

19.
Summary : Haloferax mediterranei was investigated for the production of two different high-performance polyhydroxyalkanoates (PHAs). A copolyester containing 6 mol-% 3-hydroxyvalerate (3HV) was produced from whey sugars as sole carbon source. The maximum specific growth rate (µmax.) and the maximum specific PHA production rate (qp max.) were determined with 0.10 1/h and 0.15 1/h, respectively. The cells contained 72.8 wt.-% of P-(3HB-co-6%-3HV) which featured low melting points between 150 and 160 °C and narrow molecular mass distribution (polydispersity PDI = 1.5). Further, a PHA terpolyester with an increased 3HV fraction as well as 4-hydroxybutyrate (4HB) building blocks was accumulated by feeding of whey sugars plus 3HV - and 4HB precursors. Kinetic analysis of the process reveals a µmax. of 0.14 1/h and a qp max. of 0.23 1/h, respectively. The final percentage of P-(3HB-co-21.8%-3HV-co-5.1%-4HB) in biomass amounted to 87.5 wt.-%. Also this material showed a narrow molecular mass distribution (PDI = 1.5) and a high difference between the two melting endotherms of the material (between 140 and 150 °C) and the onset of decomposition at 236 °C. The accomplished work provides viable strategies to obtain different high-quality PHAs which might be potential candidates for application in the medical and pharmaceutical field.  相似文献   

20.
采用X射线荧光光谱法与原子吸收光谱法,研究自然海水在受铜污染的情况下,铜元素在泥螺腹足中的积累量.结果显示:在实验室模拟试验中,铜元素的积累量随着时间的推移而增加,10~14d达到吸收平衡,最大积累量是国家规定的无公害水产品安全要求中有害、有毒物质最高限量的2.5倍.方法的检出限(3S/N)为0.03 mg·kg-1,加标回收率为98.8%~101.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号