首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider two classes of graphs: (i) trees of order n and diameter d =n − 3 and (ii) unicyclic graphs of order n and girth g = n − 2. Assuming that each graph within these classes has two vertices of degree 3 at distance k, we order by the index (i.e. spectral radius) the graphs from (i) for any fixed k (1 ? k ? d − 2), and the graphs from (ii) independently of k.  相似文献   

2.
For any prime,p, we construct a Cayley graph on the group,G, of affine linear transformations ofℤ/pℤ of degree 2(p−1) and second eigenvalue with the following special property: the adjacency matrix of the graph is supported on the “blocks” associated to the trivial representation and the irreducible representation of sizep−1. SinceG is of orderp(p−1), the correspondingt-uniform Cayley hypergraph has essentially optimal second eigenvalue for this degree and size of the graph (see [2] for definitions). En route we give, for any integerk>1, a simple Cayley graph onp k nodes of degreep of second eigenvalue . The author wishes to acknowledge the National Science Foundation for supporting this research in part under Grant CCR-8858788, and the Office of Naval Research under Grant N00014-87-K-0467.  相似文献   

3.
4.
The index (or spectral radius) of a simple graph is the largest eigenvalue of its adjacency matrix. For connected graphs of fixed order and size the graphs with maximal index are not yet identified (in the general case). It is known (for a long time) that these graphs are nested split graphs (or threshold graphs). In this paper we use the eigenvector techniques for getting some new (lower and upper) bounds on the index of nested split graphs. Besides we give some computational results in order to compare these bounds.  相似文献   

5.
The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. In this paper, we obtain the nullity set of bicyclic graphs of order n, and determine the bicyclic graphs with maximum nullity.  相似文献   

6.
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we provide structural and behavioral details of graphs with maximum Laplacian spectral radius among all bipartite connected graphs of given order and size. Using these results, we provide a unified approach to determine the graphs with maximum Laplacian spectral radii among all trees, and all bipartite unicyclic, bicyclic, tricyclic and quasi-tree graphs, respectively.  相似文献   

7.
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G)?n-2 if G is a simple graph on n vertices and G is not isomorphic to nK1. The extremal graphs attaining the upper bound n-2 and the second upper bound n-3 have been obtained. In this paper, the graphs with nullity n-4 are characterized. Furthermore the tricyclic graphs with maximum nullity are discussed.  相似文献   

8.
Let G be a simple graph. Let λ1(G) and μ1(G) denote the largest eigenvalue of the adjacency matrix and the Laplacian matrix of G, respectively. Let Δ denote the largest vertex degree. If G has just one cycle, then
  相似文献   

9.
Let Cn,g be the lollipop graph obtained by appending a g-cycle Cg to a pendant vertex of a path on n-g vertices. In 2002, Fallat, Kirkland and Pati proved that for and g?4, α(Cn,g)>α(Cn,g-1). In this paper, we prove that for g?4, α(Cn,g)>α(Cn,g-1) for all n, where α(Cn,g) is the algebraic connectivity of Cn,g.  相似文献   

10.
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. Cheng and Liu [B. Cheng, B. Liu, On the nullity of graphs, Electron. J. Linear Algebra 16 (2007) 60-67] characterized the extremal graphs attaining the upper bound n-2 and the second upper bound n-3. In this paper, as the continuance of it, we determine the extremal graphs with pendent vertices achieving the third upper bound n-4 and fourth upper bound n-5. We then proceed recursively to construct all graphs with pendent vertices which satisfy η(G)>0. Our results provide a unified approach to determine n-vertex unicyclic (respectively, bicyclic and tricyclic) graphs which achieve the maximal and second maximal nullity and characterize n-vertex extremal trees attaining the second and third maximal nullity. As a consequence we, respectively, determine the nullity sets of trees, unicyclic graphs, bicyclic graphs and tricyclic graphs on n vertices.  相似文献   

11.
Signless Laplacians of finite graphs   总被引:4,自引:0,他引:4  
We survey properties of spectra of signless Laplacians of graphs and discuss possibilities for developing a spectral theory of graphs based on this matrix. For regular graphs the whole existing theory of spectra of the adjacency matrix and of the Laplacian matrix transfers directly to the signless Laplacian, and so we consider arbitrary graphs with special emphasis on the non-regular case. The results which we survey (old and new) are of two types: (a) results obtained by applying to the signless Laplacian the same reasoning as for corresponding results concerning the adjacency matrix, (b) results obtained indirectly via line graphs. Among other things, we present eigenvalue bounds for several graph invariants, an interpretation of the coefficients of the characteristic polynomial, a theorem on powers of the signless Laplacian and some remarks on star complements.  相似文献   

12.
We generalize three approaches on graph transformations, respectively, from Stevanovi? and Ili? (2009) [16] and Tan (2011) [19]. We also generalize an approach of graph transformations on the spectral radius of adjacency matrix into the Laplacian coefficients of graphs from Li and Feng (1979) [26]. Moreover, we determine the unique tree having the third maximal Laplacian coefficients among all n-vertex trees.  相似文献   

13.
A note on the signless Laplacian eigenvalues of graphs   总被引:1,自引:0,他引:1  
In this paper, we consider the signless Laplacians of simple graphs and we give some eigenvalue inequalities. We first consider an interlacing theorem when a vertex is deleted. In particular, let G-v be a graph obtained from graph G by deleting its vertex v and κi(G) be the ith largest eigenvalue of the signless Laplacian of G, we show that κi+1(G)-1?κi(G-v)?κi(G). Next, we consider the third largest eigenvalue κ3(G) and we give a lower bound in terms of the third largest degree d3 of the graph G. In particular, we prove that . Furthermore, we show that in several situations the latter bound can be increased to d3-1.  相似文献   

14.
In this paper, we identify within connected graphs of order n and size n+k (with and ) the graphs whose least eigenvalue is minimal. It is also observed that the same graphs have the largest spectral spread if n is large enough.  相似文献   

15.
The index of a simple graph is the largest eigenvalue of its adjacency matrix. It is well-known that in the set of all connected graphs with fixed order and size the graphs with maximal index are nested split graphs. It was recently observed that double nested graphs assume the same role if we restrict ourselves to bipartite graphs. In this paper we provide some bounds (lower and upper) for the index of double nested graphs. Some computational results are also included.  相似文献   

16.
17.
Let T(2k) be the set of all tricyclic graphs on 2k(k?2) vertices with perfect matchings. In this paper, we discuss some properties of the connected graphs with perfect matchings, and then determine graphs with the largest index in T(2k).  相似文献   

18.
The Estrada index of a graph G is defined as , where λ1,λ2,…,λn are the eigenvalues of G. The Laplacian Estrada index of a graph G is defined as , where μ1,μ2,…,μn are the Laplacian eigenvalues of G. An edge grafting operation on a graph moves a pendent edge between two pendent paths. We study the change of Estrada index of graph under edge grafting operation between two pendent paths at two adjacent vertices. As the application, we give the result on the change of Laplacian Estrada index of bipartite graph under edge grafting operation between two pendent paths at the same vertex. We also determine the unique tree with minimum Laplacian Estrada index among the set of trees with given maximum degree, and the unique trees with maximum Laplacian Estrada indices among the set of trees with given diameter, number of pendent vertices, matching number, independence number and domination number, respectively.  相似文献   

19.
Using the AutoGraphiX system, we obtain conjectures of the form l(n)?q1i(G)?u(n) where q1 denotes the signless Laplacian index of graph is one the four operations is another invariant chosen among minimum, average and maximum degree, average distance, diameter, radius, girth, proximity, remoteness, vertex, edge and algebraic connectivities, independence number, domination number, clique number, chromatic number and matching number, Randi? index, l(n) and u(n) are best possible lower and upper bounds function of the order n of G. Algebraic conjectures are obtained in 120 cases out of 152 and structural conjectures in 12 of the remaining cases. These conjectures are known, immediate or proved in this paper, except for 17 of them, which remain open.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号